Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Forecasting Performance Measures for Traffic Safety using Deterministic and Stochastic Models
Indexado
WoS WOS:000376668803009
DOI 10.1109/ITSC.2015.475
Año 2015
Tipo proceedings paper

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Traffic-safety performance measures required by the Moving Ahead Progress in 21st Century (MAP-21) act were forecasted in this study to facilitate the reduction of fatalities and serious injuries. Given the lack of exposure data (e.g., traffic counts), time series were used to conduct the forecast. Deterministic and stochastic models were applied using four independent and univariate time series from the crash data collected by the Nevada Department of Transportation. The best model specification was obtained using root mean square error and mean absolute percent prediction error as goodness of fit. Among several deterministic models evaluated in this study, the Winter-additive model for seasonal data and the Damped-trend model for non-seasonal data provided adequate forecasts. In the case of stochastic models, for non-seasonal data, an Autoregressive Integrated Moving Average (ARIMA) model provided acceptable results. However, the absence of adequate data likely precludes an appropriate estimation using the ARIMA model. For seasonal data, a Seasonal Autoregressive Integrated Moving Average (SARIMA) model provided the best forecast measures. The stochastic SARIMA(0,0,5)(0,1,1) 12 model, an improved model, had a preferred fit for predicting the number of fatalities and serious injuries in Nevada over a five-year horizon. The SARIMA model could be an appropriate statistical model to predict fatalities and serious injuries as required by MAP-21.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Paz-Cruz, Alexander Hombre Univ Nevada - Estados Unidos
2 Veeramisti, Naveen Hombre Univ Nevada - Estados Unidos
3 de la Fuente Mella, Hanns Hombre Pontificia Universidad Católica de Valparaíso - Chile
4 IEEE Corporación

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.