Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/S10107-015-0938-6 | ||||
| Año | 2016 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The general theory of Lyapunov stability of first-order differential inclusions in Hilbert spaces has been studied by the authors in the previous paper (Adly et al. in Nonlinear Anal 75(3): 985-1008, 2012). This new contribution focuses on the case when the interior of the domain of the maximally monotone operator governing the given differential inclusion is nonempty; this includes in a natural way the finite-dimensional case. The current setting leads to simplified, more explicit criteria and permits some flexibility in the choice of the generalized subdifferentials. Some consequences of the viability of closed sets are given. Our analysis makes use of standard tools from convex and variational analysis.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Adly, Samir | Hombre |
Univ Limoges - Francia
Universite de Limoges - Francia |
| 2 | Hantoute, Abderrahim | Hombre |
Universidad de Chile - Chile
|
| 3 | Thera, Michel | Hombre |
Univ Limoges - Francia
Federat Univ - Australia Universite de Limoges - Francia Federation University Australia - Australia |
| Fuente |
|---|
| Ministerio de Economía y Competitividad |
| Australian Research Council |
| Project ECOS-CONICYT |
| Math-Amsud |
| Project FONDECYT-CONICYT |
| Agradecimiento |
|---|
| Research partially supported by the Australian Research Council under Grant DP-110102011, by the Projects FONDECYT-CONICYT no. 1110019, ECOS-CONICYT no. C10E08, Math-Amsud no. 13MATH-01 2013, and Ministerio de Economia y Competitividad MTM2011-29064-C03(03). The authors thank two anonymous referees and also Alexander Kruger for constructive comments. |