Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Computational Fluid Dynamics Modelling of a Midlatitude Small Scale upper Ocean Front
Indexado
WoS WOS:000378286200027
Scopus SCOPUS_ID:84975748508
DOI 10.18869/ACADPUB.JAFM.68.235.25287
Año 2016
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



A numerical model is implemented to describe fluid dynamic processes associated with mid-latitude small-scale (10 km) upper ocean fronts by using modified state of the art computational fluid dynamics tools. A periodic system was simulated using three different turbulent closures: 1) URANS-Reynolds Stress Model (RSM, seven equation turbulence model), 2) LES-Standard Smagorinsky (SS, algebraic model), and 3) LES-Modified Smagorinsky, introducing a correction for non-isotropic grids (MS). The results show the front developing instabilities and generating sub-mesoscale structures after four days of simulation. A strongly unstable shear flow is found to be confined within the mixed layer with a high Rossby number (Ro > 1) and high vertical velocity zones. The positive (negative) vertical velocity magnitude is found to be approximately O(10(-3)) m/s(O(10(-2)) m/s), one (two) order(s) of magnitude larger than the vertical velocity outside the sub-mesoscale structures, where the magnitude is stable at O(10(-4)) m/s. The latter value is consistent with previous numerical and experimental studies that use coarser grid sizes and therefore do not explicitly calculate the small scale structures. The nonlinear flow introduced by the sub-mesoscale dynamics within the mixed layer and the non-isotropic grid used in the calculations generates a disparity between the predicted horizontal wave-number spectra computed using the RSM model with respect to the linear eddy viscosity model SS. The MS approach improves SS predictions. This improvement is more significant below the mixed layer in the absence of flow nonlinearities. The horizontal spectra predicted with the RSM model fits a slope of 3 for large scale structures and a slope between 2 and -5/3 for turbulent structures smaller than 300 m. This work contributes to the investigation of the physical and methodological aspects for the detailed modelling and understanding of small scale structures in ocean turbulence.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Thermodynamics
Mechanics
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 CORNEJO-OLIVARES, PABLO Hombre Universidad de Concepción - Chile
2 SEPULVEDA-ALLENDE, HECTOR HITO Hombre Universidad de Concepción - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
CONICYT/FONDAP
University of Concepción
CONICYT program for doctoral studies en Chile
Mechanical Engineering Department of the University of Concepcin

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
PC was funded by the CONICYT program for doctoral studies en Chile, the Mechanical Engineering Department of the University of Concepcin and the CONICYT/FONDAP Project-15130015. HHS was hosted at the Laboratoire de Physique des Oceans, Universite de Bretagne Occidentale, Brest, France, under the University of Concepcion Fellowship, while finishing this manuscript. Computing resources were provided by the Geophysics Department (DGEO) and Mechanical Engineering Department (DIM), University of Concepcion.

Muestra la fuente de financiamiento declarada en la publicación.