Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.PHYSLETB.2016.08.025 | ||||
| Año | 2016 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In the context of single-field inflation, the conservation of the curvature perturbation on comoving slices, R-c, on super-horizon scales is one of the assumptions necessary to derive the consistency condition between the squeezed limit of the bispectrum and the spectrum of the primordial curvature perturbation. However, the conservation of R-c holds only after the perturbation has reached the adiabatic limit where the constant mode of R-c dominates over the other (usually decaying) mode. In this case, the non-adiabatic pressure perturbation defined in the thermodynamic sense, delta P-nad = delta P -c(w)(2)delta rho where c(w)(2) = P/rho usually becomes also negligible on superhorizon scales. Therefore one might think that the adiabatic limit is the same as thermodynamic adiabaticity. This is in fact not true. In other words, thermodynamic adiabaticity is not a sufficient condition for the conservation of R-c on super-horizon scales. In this paper, we consider models that satisfy delta P-nad = 0 on all scales, which we call global adiabaticity (GA), which is guaranteed if c(w)(2) = c(s)(2), where c(s) is the phase velocity of the propagation of the perturbation. A known example is the case of ultra-slow-roll (USR) inflation in which c(w)(2) = c(s)(2) = 1. In order to generalize USR we develop a method to find the Lagrangian of GA K-inflation models from the behavior of background quantities as functions of the scale factor. Applying this method we show that there indeed exists a wide class of GA models with c(w)(2) = c(s)(2), which allows R-c to grow on superhorizon scales, and hence violates the non-Gaussianity consistency condition. (C) 2016 The Authors. Published by Elsevier B.V.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Romano, Antonio Enea | Hombre |
UNIV ANTIOQUIA - Colombia
KYOTO UNIV - Japón Universidad de Antioquia - Colombia Yukawa Institute for Theoretical Physics - Japón |
| 2 | Sasaki, Misao | Mujer |
Universidad de Chile - Chile
KYOTO UNIV - Japón Yukawa Institute for Theoretical Physics - Japón |
| 3 | Sasaki, Misao | Mujer |
Universidad de Chile - Chile
KYOTO UNIV - Japón Yukawa Institute for Theoretical Physics - Japón |
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Universidad de Antioquia |
| Ministry of Education, Culture, Sports, Science and Technology |
| Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS) |
| Fondo Nacional de Desarrollo CientÃfico, Tecnológico y de Innovación Tecnológica |
| FONDECYT Postdoctoral grant |
| MEXT KAKENHI |
| Departamento Administrativo de Ciencia, TecnologÃa e Innovación (COLCIENCIAS) |
| COLCIENCIAS mobility project COSOMOLOGY AFTER BICEP |
| Dedicacion exclusiva and Sostenibilidad programs at UdeA |
| UDEA CODI project |
| Agradecimiento |
|---|
| The work of MS was supported by MEXT KAKENHI No. 15H05888. SM is funded by the FONDECYT 2015 Postdoctoral Grant 3150126. This work was supported by the Dedicacion exclusiva and Sostenibilidad programs at UdeA, the UDEA CODI project IN10219CE and 2015-4044, and COLCIENCIAS mobility project COSOMOLOGY AFTER BICEP. |
| The work of MS was supported by MEXT KAKENHI No. 15H05888 . SM is funded by the FONDECYT 2015 Postdoctoral Grant 3150126 . This work was supported by the Dedicacion exclusiva and Sostenibilidad programs at UdeA , the UDEA CODI project IN10219CE and 2015-4044 , and COLCIENCIAS mobility project COSOMOLOGY AFTER BICEP . |