Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.JDE.2016.08.024 | ||||
| Año | 2016 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In this paper we study the global dynamics of the Hamiltonian systems (x) over dot = H-y (x,y), (y) over dot = H-x(x,y), where the Hamiltonian function H has the particular form H(x, y) = y(2)/2 + P(x)/Q(x), P(x), Q(x) is an element of R[x] are polynomials, in particular H is the sum of the kinetic and a rational potential energies. Firstly, we provide the normal forms by a suitable mu-symplectic change of variables. Then, the global topological classification of the phase portraits of these systems having canonical forms in the Poincare disk in the cases where degree(P) = 0,1, 2 and degree(Q) = 0, 1, 2 are studied as a function of the parameters that define each polynomial. We use a blow-up technique for finite equilibrium points and the Poincare compactification for the infinite equilibrium points. Finally, we show some applications. (C) 2016 Elsevier Inc. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Martinez, Y. P. | - |
Universidad del Bío Bío - Chile
|
| 2 | VIDAL-DIAZ, CLAUDIO | Hombre |
Universidad del Bío Bío - Chile
|
| Agradecimiento |
|---|
| C. Vidal is partially supported by project FONDECYT 1130644. |
| We thank the referee for the careful reading of our manuscript and for his/her constructive comments. This paper is part of Y.P. Martínez Ph.D. thesis in the Program Doctorado en Matemática Aplicada, Universidad del Bío-Bío. |