Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/978-3-319-29992-1_4 | ||||
| Año | 2016 | ||||
| Tipo | proceedings paper |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Let H-0 = (i del - A)(2) be the Schrodinger operator with constant magnetic field in R-d, d = 2,3 and K subset of R-d be a compact domain with smooth boundary. We consider the Dirichlet (resp. Neumann, resp. Robin) realization of (i del - A)(2) on Omega := R-d \ K. First, in the case d = 2, we recall the known results concerning eigenvalue clusters for these exterior problems. Then, in dimension 3, after a review on the previous results for potential perturbations, we study the resonances for the obstacle problems. We establish the existence of resonance free sectors near the Landau level and study a resonance counting function. Consequently we obtain the accumulation of resonances at the Landau levels and in some cases the discretness of the set of the embedded eigenvalues.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Bruneau, Vincent | Hombre |
Univ Bordeaux - Francia
Université de Bordeaux - Francia |
| 2 | Sambou, Diomba | - |
Pontificia Universidad Católica de Chile - Chile
Facultad de Matemáticas - Chile |
| 3 | Mantoiu, M | - | |
| 4 | Raikov, G | - | |
| 5 | DeAldecoa, RT | - |