Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.JVOLGEORES.2016.05.009 | ||||
| Año | 2016 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In this study, we unravel the physical, chemical and mineralogical evolution of the active Tolhuaca geothermal system in the Andes of southern Chile. We used temperature measurements in the deep wells and geochemical analyses of borehole fluid samples to constrain present-day fluid conditions. In addition, we reconstructed the paleo-fluid temperatures and chemistry from microthermometry and LA-ICP-MS analysis of fluid inclusions taken from well-constrained parageneses in vein samples retrieved from a similar to 1000 m borehole core. Based on core logging, mineralogical observations and fluid inclusions data we identify four stages (51-S4) of progressive hydrothermal alteration. An early heating event (S1) was followed by the formation of a clay-rich cap in the upper zone (<670 m) and the development of a propylitic alteration assemblage at greater depth (S2). Boiling, flashing and brecciation occurred later (S3), followed by a final phase of fluid mixing and boiling (S4). The evolution of hydrothermal alteration at Tolhuaca has produced a mineralogical, hydrological and structural vertical segmentation of the system through the development of a low-permeability, low-cohesion clay-rich cap at shallow depth. The quantitative chemical analyses of fluid inclusions and borehole fluids reveal a significant change in chemical conditions during the evolution of Tolhuaca. Whereas borehole (present-day) fluids are rich in Au, B and As, but Cu-poor (B/Na similar to 10(0.5), As/Na similar to 10(-1.1), Cu/Na similar to 10(-42)), the paleofluids trapped in fluid inclusions are Cu-rich but poor in B and As (B/Na similar to 10(-1), As/Na similar to 10(-2.5), Cu/Na similar to 10(-2.5) in average). We interpret the fluctuations in fluid chemistry at Tolhuaca as the result of transient supply of metal-rich, magmatically derived fluids where As, Au and Cu are geochemically decoupled. Since these fluctuating physical and chemical conditions at the reservoir produced a mineralogical vertical segmentation of the system that affects the mechanical and hydrological properties of host rock, we explored the effect of the development of a low-cohesion low permeability clay cap on the conditions of fault rupture and on the long-term thermal structure of the system. These analyses were performed by using rock failure condition calculations and numerical simulations of heat and fluid flows. Calculations of the critical fluid pressures required to produce brittle rupture indicate that within the clay-rich cap, the creation or reactivation of highly permeable extensional fractures is inhibited. In contrast, in the deep upflow zone the less pervasive formation of clay mineral assemblages has allowed retention of rock strength and dilatant behavior during slip, sustaining high permeability conditions. Numerical simulations of heat and fluid flows support our observations and suggest that the presence of a low permeability clay cap has helped increase the duration of high-enthalpy conditions by a factor of three in the deep upflow zone at Tolhuaca geothermal system, when compared with an evolutionary scenario where a clay cap was not developed. Furthermore, our data demonstrate that the dynamic interplay between fluid flow, crack-seal processes and hydrothermal alteration are key factors in the evolution of the hydrothermal system, leading to the development of a high enthalpy reservoir at the flank of the dormant Tolhuaca volcano. (C) 2016 Elsevier B.V. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Sanchez-Alfaro, Pablo A. | Hombre |
Universidad de Chile - Chile
Centro de Excelencia en Geotermia de Los Andes - Chile |
| 2 | REICH-MORALES, MARTIN HERBERT | Hombre |
Universidad de Chile - Chile
Centro de Excelencia en Geotermia de Los Andes - Chile |
| 3 | ARANCIBIA-HERNANDEZ, GLORIA CECILIA | Mujer |
Universidad de Chile - Chile
Pontificia Universidad Católica de Chile - Chile Centro de Excelencia en Geotermia de Los Andes - Chile |
| 4 | PEREZ-FLORES, PAMELA VIVIANA | Mujer |
Universidad de Chile - Chile
Pontificia Universidad Católica de Chile - Chile Centro de Excelencia en Geotermia de Los Andes - Chile |
| 5 | CEMBRANO-PERASSO, JOSE MIGUEL | Hombre |
Universidad de Chile - Chile
Pontificia Universidad Católica de Chile - Chile Centro de Excelencia en Geotermia de Los Andes - Chile |
| 6 | Driesner, Thomas | Hombre |
ETH Zentrum NO - Suiza
ETH Zurich - Suiza |
| 7 | Lizama, Martin | Hombre |
Universidad de Chile - Chile
Centro de Excelencia en Geotermia de Los Andes - Chile |
| 8 | Rowland, Julie | Mujer |
UNIV AUCKLAND - Nueva Zelanda
University of Auckland - Nueva Zelanda The University of Auckland - Nueva Zelanda |
| 9 | MORATA-CESPEDES, DIEGO ANTONIO | Hombre |
Universidad de Chile - Chile
Centro de Excelencia en Geotermia de Los Andes - Chile |
| 10 | Heinrich, Christoph A. | Hombre |
ETH Zentrum NO - Suiza
ETH Zurich - Suiza |
| 11 | Tardani, Daniele | Mujer |
Universidad de Chile - Chile
Centro de Excelencia en Geotermia de Los Andes - Chile |
| 12 | CAMPOS-SEPULVEDA, EDUARDO | Hombre |
Universidad Católica del Norte - Chile
|
| Fuente |
|---|
| FONDECYT |
| CONICYT |
| MECESUP |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Comisión Nacional de Investigación Científica y Tecnológica |
| Comisión Nacional de Investigación CientÃfica y Tecnológica |
| Fondo Nacional de Desarrollo CientÃfico y Tecnológico |
| African Mathematics Millennium Science Initiative |
| Millennium Science Initiative Grant |
| CEGA-FONDAP project |
| Agradecimiento |
|---|
| We acknowledge support from FONDECYT grant #1130030, CEGA-FONDAP project #15090013, and Millennium Science Initiative grant NC130065. We thank MRP-Chile Ltd. and former GGE Ltd., in particular S. lriarte, S. Lohmar, G. Melosh, J. Stimac and A. Colvin for providing access to Tolhuaca and for information and samples used in this study. M. Walle, S. Scott and M. Steele-MacInnis from IGP-ETH Zurich are thanked for their help during LA-ICP-MS data acquisition at ETH-Zurich. P.S., D.T. and P.P. acknowledge financial support given by MECESUP and CONICYT doctoral grants. J.C. thanks the National Research Centre for Integrated Natural Disasters Management (RCINDIM). We sincerely thank Editor in-Chief Alessandro Aiuppa for handling our manuscript and the two anonymous reviewers for their constructive comments on our manuscript. |
| We acknowledge support from FONDECYT grant # 1130030 , CEGA-FONDAP project # 15090013 , and Millennium Science Initiative grant NC130065 . We thank MRP-Chile Ltd. and former GGE Ltd., in particular S. Iriarte, S. Lohmar, G. Melosh, J. Stimac and A. Colvin for providing access to Tolhuaca and for information and samples used in this study. M. Wälle, S. Scott and M. Steele-MacInnis from IGP-ETH Zürich are thanked for their help during LA-ICP-MS data acquisition at ETH-Zürich. P.S., D.T. and P.P. acknowledge financial support given by MECESUP and CONICYT doctoral grants. J.C. thanks the National Research Centre for Integrated Natural Disasters Management (RCINDIM). We sincerely thank Editor in-Chief Alessandro Aiuppa for handling our manuscript and the two anonymous reviewers for their constructive comments on our manuscript. |