Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.CAMWA.2016.08.032 | ||||
| Año | 2016 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In this work we develop the a posteriori error analysis of an augmented mixed finite element method for the 2D and 3D versions of the Navier-Stokes equations when the viscosity depends nonlinearly on the module of the velocity gradient. Two different reliable and efficient residual-based a posteriori error estimators for this problem on arbitrary (convex or non-convex) polygonal and polyhedral regions are derived. Our analysis of reliability of the proposed estimators draws mainly upon the globalinf-sup condition satisfied by a suitable linearisation of the continuous formulation, an application of Helmholtz decomposition, and the local approximation properties of the Raviart-Thomas and Clement interpolation operators. In addition, differently from previous approaches for augmented mixed formulations, the boundedness of the Clement operator plays now an interesting role in the reliability estimate. On the other hand, inverse and discrete inequalities, and the localisation technique based on triangle-bubble and edge-bubble functions are utilised to show their efficiency. Finally, several numerical results are provided to illustrate the good performance of the augmented mixed method, to confirm the aforementioned properties of the a posteriori error estimators, and to show the behaviour of the associated adaptive algorithm. (C) 2016 Elsevier Ltd. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | GATICA-PEREZ, GABRIEL NIBALDO | Hombre |
Universidad de Concepción - Chile
|
| 2 | Ruiz-Baier, R. | Hombre |
UNIV OXFORD - Reino Unido
University of Oxford - Reino Unido |
| 3 | Tierra, Giordano | Hombre |
Temple Univ - Estados Unidos
Temple University - Estados Unidos |
| Fuente |
|---|
| Universidad de Concepción |
| CONICYT |
| Universidad de Chile |
| Comisión Nacional de Investigación Científica y Tecnológica |
| ANANUM |
| Swiss National Science Foundation |
| Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung |
| Ministerstvo Školství, Mládeže a Tělovýchovy |
| Centro de Investigacion en Ingenieria Matematica (CI2MA), Universidad de Concepcion |
| Centro de Investigación en Ingeniería Matemática |
| BASAL project CMM, Universidad de Chile |
| CI 2 MA |
| Ministry of Education, Youth and Sports of the Czech Republic through the ERC-CZ project |
| Agradecimiento |
|---|
| This research was partially supported by BASAL project CMM, Universidad de Chile, by Centro de Investigacion en Ingenieria Matematica (CI<SUP>2</SUP>MA), Universidad de Concepcion, by CONICYT project Anillo ACT1118 (ANANUM), by the Swiss National Science Foundation through the research grant SNSF PP00P2-144922, and by the Ministry of Education, Youth and Sports of the Czech Republic through the ERC-CZ project LL1202. |
| This research was partially supported by BASAL project CMM, Universidad de Chile, by Centro de Investigación en Ingeniería Matemática (CI 2 MA), Universidad de Concepción, by CONICYT project Anillo ACT1118 (ANANUM), by the Swiss National Science Foundation through the research grant SNSF PP00P2-144922 , and by the Ministry of Education, Youth and Sports of the Czech Republic through the ERC-CZ project LL1202 . |