Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.FUSENGDES.2016.06.016 | ||||
| Año | 2016 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Feature extraction is one of the most important machine learning issues. Finding suitable attributes of datasets can enormously reduce the dimensionality of the input space, and from a computational point of view can help all of the following steps of pattern recognition problems, such as classification or information retrieval. However, the feature extraction step is usually performed manually. Moreover, depending on the type of data, we can face a wide range of methods to extract features. In this sense, the process to select appropriate techniques normally takes a long time. This work describes the use of recent advances in deep learning approach in order to find a good feature representation automatically. The implementation of a special neural network called sparse autoencoder and its application to two classification problems of the TJ-II fusion database is shown in detail. Results have shown that it is possible to get robust classifiers with a high successful rate, in spite of the fact that the feature space is reduced to less than 0.02% from the original one. (C) 2016 Elsevier B.V. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | FARIAS-CASTRO, GONZALO ALBERTO | Hombre |
Pontificia Universidad Católica de Valparaíso - Chile
|
| 2 | Dormido-Canto, Sebastian | Hombre |
UNED - España
Universidad Nacional de Educación a Distancia - España |
| 3 | Vega, J. | Hombre |
CIEMAT - España
Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas - España |
| 4 | Ratta, Giuseppe | Hombre |
CIEMAT - España
Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas - España |
| 5 | VARGAS-OYARZUN, HECTOR | Hombre |
Pontificia Universidad Católica de Valparaíso - Chile
|
| 6 | HERMOSILLA-VIGNEAU, GABRIEL | Hombre |
Pontificia Universidad Católica de Valparaíso - Chile
|
| 7 | Alfaro, Luis | Hombre |
Pontificia Universidad Católica de Valparaíso - Chile
|
| 8 | Valencia, Agustin | Hombre |
Pontificia Universidad Católica de Valparaíso - Chile
|
| Fuente |
|---|
| Ministerio de Economía y Competitividad |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Chilean Ministry of Education |
| Spanish Ministry of Economy and Competitiveness |
| Fondo Nacional de Desarrollo CientÃfico y Tecnológico |
| Agradecimiento |
|---|
| This work was partially supported by Chilean Ministry of Education under the Project FONDECYT 11121590 and FONDECYT 1161584. This work was partially funded by the Spanish Ministry of Economy and Competitiveness under the Projects Nos. ENE2015-64914-C3-1-R and ENE2015-64914-C3-2-R. |