Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1051/M2AN/2016007 | ||||
| Año | 2016 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In this paper we develop an a posteriori error analysis for an augmented mixed-primal finite element approximation of a stationary viscous flow and transport problem. The governing system corresponds to a scalar, nonlinear convection-diffusion equation coupled with a Stokes problem with variable viscosity, and it serves as a prototype model for sedimentation-consolidation processes and other phenomena where the transport of species concentration within a viscous fluid is of interest. The solvability of the continuous mixed-primal formulation along with a priori error estimates for a finite element scheme using Raviart-Thomas spaces of order k for the stress approximation, and continuous piecewise polynomials of degree <= k + 1 for both velocity and concentration, have been recently established in [M. Alvarez et al., ESAIM: M2AN 49 (2015) 1399-1427]. Here we derive two efficient and reliable residual-based a posteriori error estimators for that scheme: for the first estimator, and under suitable assumptions on the domain, we apply a Helmholtz decomposition and exploit local approximation properties of the Clement interpolant and Raviart-Thomas operator to show its reliability. On the other hand, its efficiency follows from inverse inequalities and the localization arguments based on triangle-bubble and edge-bubble functions. Secondly, an alternative error estimator is proposed, whose reliability can be proved without resorting to Helmholtz decompositions. Our theoretical results are then illustrated via some numerical examples, highlighting also the performance of the scheme and properties of the proposed error indicators.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | ALVAREZ-GUADAMUZ, MARIO ANDRES | Hombre |
UNIV COSTA RICA - Costa Rica
Universidad de Concepción - Chile Universidad de Costa Rica - Costa Rica |
| 2 | GATICA-PEREZ, GABRIEL NIBALDO | Hombre |
Universidad de Concepción - Chile
|
| 3 | Ruiz-Baier, R. | Hombre |
UNIV OXFORD - Reino Unido
University of Oxford - Reino Unido |
| Fuente |
|---|
| Universidad de Concepción |
| CONICYT-Chile |
| Universidad de Chile |
| Ministry of Education |
| Comisión Nacional de Investigación Científica y Tecnológica |
| ANANUM |
| Project Anillo |
| Universidad de Concepci?n |
| Centro de Investigacion en Ingenieria Matematica (CI2MA), Universidad de Concepcion |
| Ministery of Education through the project REDOC.CTA of the Graduate School, Universidad de Concepcion |
| Ministery of Education |
| CONICYT-Chile through BASAL project CMM |
| Centro de Investigaci?n en Ingeniery? |
| Centro de Investigación en Ingenieryá Matemática |
| Agradecimiento |
|---|
| This work was partially supported by CONICYT-Chile through BASAL project CMM, Universidad de Chile, and project Anillo ACT1118 (ANANUM); by the Ministery of Education through the project REDOC.CTA of the Graduate School, Universidad de Concepcion; and by Centro de Investigacion en Ingenieria Matematica (CI<SUP>2</SUP>MA), Universidad de Concepcion. |
| This work was partially supported by CONICYT-Chile through BASAL project CMM, Universidad de Chile, and project Anillo ACT1118 (ANANUM); by the Ministery of Education through the project REDOC.CTA of the Graduate School, Universidad de Concepción; and by Centro de Investigación en Ingenieryá Matemática (CI2MA), Universidad de Concepcion. |