Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1002/NUM.22077 | ||||
| Año | 2017 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We present and analyze a nonconforming domain decomposition approximation for a hypersingular operator governed by the Helmholtz equation in three dimensions. This operator appears when considering the corresponding Neumann problem in unbounded domains exterior to open surfaces. We consider small wave numbers and low-order approximations with Nitsche coupling across interfaces. Under appropriate assumptions on mapping properties of the weakly singular and hypersingular operators with Helmholtz kernel, we prove that this method converges almost quasioptimally, that is, with optimal orders reduced by an arbitrarily small positive number. Numerical experiments confirm our error estimate. (c) 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 125-141, 2017
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Heuer, N. | Hombre |
Pontificia Universidad Católica de Chile - Chile
Facultad de Matemáticas - Chile |
| 2 | Salmeron, Gredy | - |
Pontificia Universidad Católica de Chile - Chile
Facultad de Matemáticas - Chile |