Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.NEUCOM.2016.11.040 | ||||
| Año | 2017 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Extreme learning machine (ELM) is a machine learning technique based on competitive single-hidden layer feedforward neural network (SLFN). However, traclitional ELM and its variants are only based on random assignment of hidden weights using a uniform distribution, and then the calculation of the weights output using the least-squares method. This paper proposes a new architecture based on a non-linear layer in parallel by another non-linear layer and with entries of independent weights. We explore the use of a deterministic assignment of the hidden weight values using low-discrepancy sequences (LDSs). The simulations are performed with Halton and Sobol sequences. The results for regression and classification problems confirm the advantages of using the proposed method called PL-ELM algorithm with the deterministic assignment of hidden weights. Moreover, the PL-ELM algorithm with the deterministic generation using LDSs can be extended to other modified ELM algorithms.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Henriquez, Pablo A. | Hombre |
Universidad Adolfo Ibáñez - Chile
|
| 2 | RUZ-HEREDIA, GONZALO ANDRES | Hombre |
Universidad Adolfo Ibáñez - Chile
Centro de Ecología Aplicada y Sustentabilidad - Chile Centro de Ecología Aplicada y Sustentabilidad (CAPES) - Chile |
| Fuente |
|---|
| Basal(CONICYT)-CMM |
| CONICYT-Chile under grant CONICYT Doctoral scholarship |
| Research Center Millennium Nucleus Models of Crisis |