Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/S12346-015-0185-5 | ||||
| Año | 2017 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In this paper we consider polynomial perturbations of a family of polynomial Hamiltonian equations whose associated Hamiltonian is not transversal to infinity, and its complexification is not a Morse polynomial. We look for an algorithm to compute the first non-vanishing Poincare-Pontryagin-Melnikov function of the displacement function associated with the perturbed equation. We show that the algorithm of the case when the Hamiltonian is transversal to infinity and its complexification is a Morse polynomial can be extended to our family of perturbed equations. We apply the result to study the maximum number of zeros of the first non-vanishing Poincare-Pontryagin-Melnikov function associated with some perturbed Hamiltonian equations.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Rebollo-Perdomo, Salomon | Hombre |
Universidad del Bío Bío - Chile
|