Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.2136/VZJ2016.10.0101 | ||||
| Año | 2017 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Green roofs integrate vegetation into buildings, thereby minimizing energy requirements and water runoff. An understanding of the processes controlling water and heat fluxes in green roofs under site-specific climatic conditions is needed to optimize their benefits. The hydrodynamic and thermal characteristics of substrates and vegetation layers are the primary controlling factors determining water and heat fluxes on green roofs. We characterized the physical, hydrodynamic, and thermal properties of five green roof substrates. We performed coupled heat and water transport numerical simulations to assess the impact of these properties on the hydraulic and thermal performance of a hypothetical roof system. The five substrates showed a large capacity to store and transport water, while their ability to conduct heat was similar to other green roof substrates. Under unsaturated conditions, water retention, storage capacity, and organic matter (OM) content of the substrates controlled the hydraulic and thermal response of each substrate. Our simulation results show that the substrate with the best capacity to store water and to reduce the heat flux through the substrate layer was composed of perlite and peat and had large OM content (30.7%) and saturated water content (0.757 cm(3) cm(-3)). This substrate outperformed the others, probably due to its low thermal conductivity and its large pore space. The dynamic modeling presented in this study can represent the complexity of the processes that are occurring in green roof substrates, and thus it is a tool that can be used to design the configuration of a green roof.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | SANDOVAL-SANZANA, VICTOR MANUEL | Hombre |
Pontificia Universidad Católica de Chile - Chile
Centro de Desarrollo Urbano Sustentable CEDEUS - Chile |
| 2 | BONILLA-MELENDEZ, CARLOS ALBERTO | Hombre |
Pontificia Universidad Católica de Chile - Chile
Centro de Desarrollo Urbano Sustentable CEDEUS - Chile |
| 3 | GIRONAS-LEON, JORGE ALFREDO | Hombre |
Pontificia Universidad Católica de Chile - Chile
Centro de Desarrollo Urbano Sustentable CEDEUS - Chile Centro Nacional de Investigacion para la Gestion Integrada de Desastres Naturales - Chile Centro de Investigación para la Gestión Integrada del Riesgo de Desastres (CIGIDEN) - Chile |
| 4 | VERA-ARAYA, SERGIO EDUARDO | Hombre |
Pontificia Universidad Católica de Chile - Chile
Centro de Desarrollo Urbano Sustentable CEDEUS - Chile |
| 5 | Victorero, F. | Hombre |
Pontificia Universidad Católica de Chile - Chile
|
| 6 | BUSTAMANTE-GOMEZ, WALDO ENRIQUE | Hombre |
Centro de Desarrollo Urbano Sustentable CEDEUS - Chile
Pontificia Universidad Católica de Chile - Chile |
| 7 | ROJAS-DIAZ, ANA MARIA VICTORIA | Mujer |
VR ARQ - Chile
VR+ARQ - Chile |
| 8 | Leiva, Eduardo | Hombre |
Pontificia Universidad Católica de Chile - Chile
Centro de Desarrollo Urbano Sustentable CEDEUS - Chile |
| 9 | PASTEN-GONZÁLEZ, PABLO ARTURO | Hombre |
Pontificia Universidad Católica de Chile - Chile
Centro de Desarrollo Urbano Sustentable CEDEUS - Chile |
| 10 | SUAREZ-VASQUEZ, FRANCISCO JAVIER | Hombre |
Pontificia Universidad Católica de Chile - Chile
Centro de Desarrollo Urbano Sustentable CEDEUS - Chile Centro de Excelencia en Geotermia de Los Andes - Chile CEGA - Chile |
| Fuente |
|---|
| CEDEUS |
| Centro de Desarrollo Urbano Sustentable |
| Center for Sustainable Urban Development |
| Andean Geothermal Centre of Excellence |
| CONICYT/FONDAP/15110020 |
| Agradecimiento |
|---|
| We acknowledge funding from the Center for Sustainable Urban Development (CE-DEUS-CONICYT/FONDAP/15110020) and from the Andean Geothermal Centre of Excellence (CEGA-CONICYT/FONDAP/15090013). We also thank other projects that partially funded this work (INNOVA-CORFO 12IDL2-13630, CONICYT/FONDECYT/1150675, CONICYT/FONDECYT/1131131). The data set of this research can be accessed online (http://dx.doi.org/10.17632/n4mxkv4mbj.2). We also want to thank the two anonymous reviewers and the associate editor (Dr.Andrew Ramsburg) for their constructive criticism, which improved the quality of this manuscript. |
| We acknowledge funding from the Center for Sustainable Urban Development (CEDEUS- CONICYT/FONDAP/15110020) and from the Andean Geothermal Centre of Excellence (CEGA- CONICYT/FONDAP/15090013). We also thank other projects that partially funded this work (INNOVA-CORFO 12IDL2-13630, CONICYT/FONDECYT/ 1150675, CONICYT/FONDECYT/1131131). The data set of this research can be accessed online (http://dx.doi.org/10.17632/n4mxkv4mbj.2). We also want to thank the two anonymous reviewers and the associate editor (Dr. Andrew Ramsburg) for their constructive criticism, which improved the quality of this manuscript. |