Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1134/S1547477117020066 | ||||
| Año | 2017 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We consider the spherical reduction of the rational Calogero model (of type A(n-1), without the center of mass) as a maximally superintegrable quantum system. It describes a particle on the (n - 2)-sphere in a very special potential. A detailed analysis is provided of the simplest non-separable case, n = 4, whose potential blows up at the edges of a spherical tetrahexahedron, tesselating the two-sphere into 24 identical right isosceles spherical triangles in which the particle is trapped. We construct a complete set of independent conserved charges and of Hamiltonian intertwiners and elucidate their algebra. The key structure is the ring of polynomials in Dunkl-deformed angular momenta, in particular the subspaces invariant and antiinvariant under all Weyl reflections, respectively.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | CORREA-SANTANDER, FRANCISCO JAVIER | Hombre |
Universidad Austral de Chile - Chile
Leibniz Univ Hannover - Alemania Gottfried Wilhelm Leibniz Universität - Alemania Fakultät für Mathematik und Physik - Alemania |
| 2 | Lechtenfeld, Olaf | Hombre |
Leibniz Univ Hannover - Alemania
Gottfried Wilhelm Leibniz Universität - Alemania Fakultät für Mathematik und Physik - Alemania |
| Fuente |
|---|
| National Science Foundation |
| Deutsche Forschungsgemeinschaft |
| Alexander von Humboldt Foundation |
| COST (European Cooperation in Science and Technology) |
| Israel Science Foundation |
| Alexander von Humboldt-Stiftung |
| Israel Academy of Sciences and Humanities |
| Agradecimiento |
|---|
| This work was partially supported by the Alexander von Humboldt Foundation under grant CHL 1153844 STP and by the Deutsche Forschungsgemeinschaft under grant LE 838/12-2. This article is based upon work from COST Action MP1405 QSPACE, supported by COST (European Cooperation in Science and Technology). |
| His research is partially supported by The Israel Science Foundation founded by the Israel Academy of Sciences and Humanities. Publication 774. * |