Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1090/MCOM/3175 | ||||
| Año | 2017 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We prove local inverse-type estimates for the four non-local boundary integral operators associated with the Laplace operator on a bounded Lipschitz domain Omega in R-d for d >= 2 with piecewise smooth boundary. For piecewise polynomial ansatz spaces and is an element of {2, 3}, the inverse estimates are explicit in both the local mesh width and the approximation order. An application to efficiency-type estimates in a posteriori error estimation in boundary element methods is given.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Aurada, Markus | Hombre |
Vienna Univ Technol - Austria
Technische Universität Wien - Austria |
| 2 | Feischl, Michael | Hombre |
Univ New South Wales - Australia
University of New South Wales (UNSW) Australia - Australia UNSW Sydney - Australia |
| 3 | Fuhrer, Thomas | Hombre |
Pontificia Universidad Católica de Chile - Chile
Facultad de Matemáticas - Chile |
| 4 | Karkulik, Michael | Hombre |
Universidad Técnica Federico Santa María - Chile
|
| 5 | Melenk, J. M. | Hombre |
Vienna Univ Technol - Austria
Technische Universität Wien - Austria |
| 6 | Praetorius, D. | Hombre |
Vienna Univ Technol - Austria
Technische Universität Wien - Austria |
| Fuente |
|---|
| NSF |
| Austrian Science Fund (FWF) |
| CONICYT through FONDECYT project |
| FWF doctoral school |
| Agradecimiento |
|---|
| The second and sixth authors were supported by the Austrian Science Fund (FWF) under grant P27005. The second, fifth, and sixth authors were supported through the FWF doctoral school W124. The third author was supported by CONICYT through FONDECYT project 3150012. The fourth author was supported by CONICYT through FONDECYT project 3140614 and by NSF under grant DMS-1318916. |