Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.4310/MRL.2017.V24.N2.A3 | ||||
| Año | 2017 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We propose a framization of the Temperley-Lieb algebra. The framization is a procedure that can briefly be described as the adding of framing to a known knot algebra in a way that is both algebraically consistent and topologically meaningful. Our framization of the Temperley-Lieb algebra is defined as a quotient of the Yokonuma-Hecke algebra. The main theorem provides necessary and sufficient conditions for the Markov trace defined on the Yokonuma-Hecke algebra to pass through to the quotient algebra. Using this we construct 1-variable invariants for classical knots and links, which, as we show, are not topologically equivalent to the Jones polynomial.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Goundaroulis, Dimos | Hombre |
Natl Tech Univ Athens - Grecia
National Technical University of Athens - Grecia |
| 2 | Juyumaya, Jesus | Hombre |
Universidad de Valparaíso - Chile
|
| 3 | Kontogeorgis, Aristides | Hombre |
Univ Athens - Grecia
National Technical University of Athens - Grecia |
| 4 | Lambropoulou, S. | Mujer |
Natl Tech Univ Athens - Grecia
National Technical University of Athens - Grecia |
| Fuente |
|---|
| European Union (European Social Fund - ESF) |
| Greek national funds through the Operational Program |
| Agradecimiento |
|---|
| This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: THALES: Reinforcement of the interdisciplinary and/or inter-institutional research and innovation. |