Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/S10092-017-0219-2 | ||||
| Año | 2017 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In an earlier work of us, a new mixed finite element scheme was developed for the Boussinesq model describing natural convection. Our methodology consisted of a fixed-point strategy for the variational problem that resulted after introducing a modified pseudostress tensor and the normal component of the temperature gradient as auxiliary unknowns in the corresponding Navier-Stokes and advection-diffusion equations defining the model, respectively, along with the incorporation of parameterized redundant Galerkin terms. The well-posedness of both the continuous and discrete settings, the convergence of the associated Galerkin scheme, as well as a priori error estimates of optimal order were stated there. In this work we complement the numerical analysis of our aforementioned augmented mixed-primal method by carrying out a corresponding a posteriori error estimation in two and three dimensions. Standard arguments relying on duality techniques, and suitable Helmholtz decompositions are used to derive a global error indicator and to show its reliability. A globally efficiency property with respect to the natural norm is further proved via usual localization techniques of bubble functions. Finally, an adaptive algorithm based on a reliable, fully local and computable a posteriori error estimator induced by the aforementioned one is proposed, and its performance and effectiveness are illustrated through a few numerical examples in two dimensions.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Colmenares, Eligio | Hombre |
Universidad del Bío Bío - Chile
|
| 2 | GATICA-PEREZ, GABRIEL NIBALDO | Hombre |
Universidad de Concepción - Chile
|
| 3 | OYARZUA-VARGAS, RICARDO | Hombre |
Universidad del Bío Bío - Chile
Universidad de Concepción - Chile |
| Fuente |
|---|
| Universidad de Concepción |
| CONICYT-Chile |
| Universidad de Chile |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Universidad del Bío-Bío |
| Centro de Investigacion en Ingenieria Matematica (CI2MA), Universidad de Concepcion |
| Becas-Chile Programme for foreign students |
| Centro de Investigación en Ingeniería Matemática |
| Universidad del Bio-Bio through DIUBB Project |
| CONICYT-Chile through BASAL project CMM |
| Universidad del B?o |
| Centro de Investigaci?n en Ingenier?a Matem?tica Universidad de Concepci?n |
| Agradecimiento |
|---|
| This work was partially supported by CONICYT-Chile through BASAL project CMM, Universidad de Chile, project Fondecyt 1161325, and the Becas-Chile programme for foreign students; by Centro de Investigacion en Ingenieria Matematica (CI<SUP>2</SUP>MA), Universidad de Concepcion; and by Universidad del Bio-Bio through DIUBB Project 120808 GI/EF. |
| This work was partially supported by CONICYT-Chile through BASAL project CMM, Universidad de Chile, project Fondecyt 1161325, and the Becas?Chile programme for foreign students; by Centro de Investigaci?n en Ingenier?a Matem?tica Universidad de Concepci?n; and by Universidad del B?o-B?o through DIUBB Project 120808 GI/EF. |