Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Object Recognition in X-ray Testing Using Adaptive Sparse Representations
Indexado
WoS WOS:000411315300008
Scopus SCOPUS_ID:84979746798
DOI 10.1007/S10921-016-0362-8
Año 2016
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



In recent years, X-ray screening systems have been used to safeguard environments in which access control is of paramount importance. Security checkpoints have been placed at the entrances to many public places to detect prohibited items such as handguns and explosives. Human operators complete these tasks because automated recognition in baggage inspection is far from perfect. Research and development on X-ray testing is, however, ongoing into new approaches that can be used to aid human operators. This paper attempts to make a contribution to the field of object recognition by proposing a new approach called Adaptive Sparse Representation (XASR+). It consists of two stages: learning and testing. In the learning stage, for each object of training dataset, several patches are extracted from its X-ray images in order to construct representative dictionaries. A stop-list is used to remove very common words of the dictionaries. In the testing stage, test patches of the test image are extracted, and for each test patch a dictionary is built concatenating the 'best' representative dictionary of each object. Using this adapted dictionary, each test patch is classified following the Sparse Representation Classification methodology. Finally, the test image is classified by patch voting. Thus, our approach is able to deal with less constrained conditions including some contrast variability, pose, intra-class variability, size of the image and focal distance. We tested the effectiveness of our method for the detection of four different objects. In our experiments, the recognition rate was more than 97% in each class, and more than 94% if the object is occluded less than 15%. Results show that XASR+ deals well with unconstrained conditions, outperforming various representative methods in the literature.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Materials Science, Characterization & Testing
Materials Science, Characterization, Testing
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 MERY-QUIROZ, DOMINGO Hombre Pontificia Universidad Católica de Chile - Chile
2 Svec, Erick Hombre Pontificia Universidad Católica de Chile - Chile
3 Arias, Marco Hombre Pontificia Universidad Católica de Chile - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Origen de Citas Identificadas



Muestra la distribución de países cuyos autores citan a la publicación consultada.

Citas identificadas: Las citas provienen de documentos incluidos en la base de datos de DATACIENCIA

Citas Identificadas: 13.33 %
Citas No-identificadas: 86.67 %

Muestra la distribución de instituciones nacionales o extranjeras cuyos autores citan a la publicación consultada.

Citas identificadas: Las citas provienen de documentos incluidos en la base de datos de DATACIENCIA

Citas Identificadas: 13.33 %
Citas No-identificadas: 86.67 %

Financiamiento



Fuente
Fondo Nacional de Desarrollo Científico y Tecnológico
Comisión Nacional de Investigación Científica y Tecnológica
Fondecyt from CONICYT, Chile

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was supported by Fondecyt Grant No. 1130934 from CONICYT, Chile.
This work was supported by Fondecyt Grant No. 1130934 from CONICYT, Chile.

Muestra la fuente de financiamiento declarada en la publicación.