Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1093/MNRAS/STX1996 | ||||
| Año | 2017 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The formation of massive black hole binaries (MBHBs) is an unavoidable outcome of galaxy evolution via successive mergers. However, the mechanism that drives their orbital evolution from parsec separations down to the gravitational wave dominated regime is poorly understood, and their final fate is still unclear. If such binaries are embedded in gas-rich and turbulent environments, as observed in remnants of galaxy mergers, the interaction with gas clumps (such as molecular clouds) may efficiently drive their orbital evolution. Using numerical simulations, we test this hypothesis by studying the dynamical evolution of an equal mass, circular MBHB accreting infalling molecular clouds. We investigate different orbital configurations, modelling a total of 13 systems to explore different possible impact parameters and relative inclinations of the cloud-binary encounter. We focus our study on the prompt, transient phase during the first few orbits when the dynamical evolution of the binary is fastest, finding that this evolution is dominated by the exchange of angular momentum through gas capture by the individual black holes and accretion. Building on these results, we construct a simple model for evolving an MBHB interacting with a sequence of clouds, which are randomly drawn from reasonable populations with different levels of anisotropy in their angular momenta distributions. We show that the binary efficiently evolves down to the gravitational wave emission regime within a few hundred million years, overcoming the 'final parsec' problem regardless of the stellar distribution.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | GARRIDO-GOICOVIC, FELIPE | Hombre |
Pontificia Universidad Católica de Chile - Chile
Max Planck Inst Gravitat Phys - Alemania HITS - Alemania Max Planck Institute for Gravitational Physics (Albert Einstein Institute) - Alemania Heidelberg Institute for Theoretical Studies (HITS GmbH) - Alemania Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) - Alemania |
| 2 | Sesana, Alberto | Hombre |
Max Planck Inst Gravitat Phys - Alemania
Univ Birmingham - Reino Unido Max Planck Institute for Gravitational Physics (Albert Einstein Institute) - Alemania University of Birmingham - Reino Unido Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) - Alemania |
| 3 | CUADRA-STIPETICH, JORGE RODRIGO | Hombre |
Pontificia Universidad Católica de Chile - Chile
Max Planck Inst Extraterr Phys MPE - Alemania Centro de Excelencia en Astrofísica y Tecnologías Afines - Chile Max Planck Institute for Extraterrestrial Physics - Alemania |
| 4 | Stasyszyn, Federico | Hombre |
UNC CONICET - Argentina
Leibniz Inst Astrophys Potsdam AIP - Alemania Centro de Investigaciones En Quimica Biologica de Cordoba - Argentina Leibniz Institute for Astrophysics Potsdam - Alemania Observatorio Astronomico de la Universidad Nacional de Cordoba - Argentina |
| Fuente |
|---|
| DAAD |
| Royal Society |
| Max Planck Society |
| CONICYT-Chile through FONDECYT grant |
| CONICYT-Chile through Basal grant |
| CONICYT-Chile through Redes grant |
| CONICYT-Chile through Anillo grant |
| CONICYT-Chile through Exchange grant |
| CONICYT PCHA/Doctorado Nacional scholarship |
| Agradecimiento |
|---|
| FGG thanks Camilo Fontecilla and Francisco Aros for very inspiring discussions, as well as the warm hospitality of the University of Birmingham and the Albert Einstein Institute (AEI) during the development of this work. The simulations were performed on the datura cluster at the AEI. We acknowledge support from CONICYT-Chile through FONDECYT (1141175), Basal (PFB0609), Anillo (ACT1101), Redes (120021) and Exchange (PCCI130064) grants; and from DAAD (57055277). FGG is supported by CONICYT PCHA/Doctorado Nacional scholarship. AS is supported by a University Research Fellowship of the Royal Society. JC and FGG acknowledge the kind hospitality of the Max-Planck-Institut fur Extraterrestrische Physik, and funding from the Max Planck Society through a 'Partner Group' grant. |