Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



A non-compactness result on the fractional Yamabe problem in large dimensions
Indexado
WoS WOS:000413881100004
Scopus SCOPUS_ID:85026864787
DOI 10.1016/J.JFA.2017.07.011
Año 2017
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Let (Xn+1, g(+)) be an (n + 1)-dimensional asymptotically hyperbolic manifold with conformal infinity (M-n, [(h) over cap]). The fractional Yamabe problem addresses to solve P-gamma[g(+), (h) over cap](u) = cu(n+2 gamma/n-2 gamma), u > 0 on M where c is an element of R and P-gamma[g(+) , (h) over cap] is the fractional conformal Laplacian whose principal symbol is the Laplace-Beltrami operator (-Delta)(gamma) on M. In this paper, we construct a metric on the half space X = R-+(n+1), which is conformally equivalent to the unit ball, for which the solution set of the fractional Yamabe equation is non -compact provided that n >= 24 for gamma is an element of (0, gamma*) and n >= 25 for gamma is an element of [gamma*,1) where gamma* is an element of (0,1) is a certain transition exponent. The value of gamma* turns out to be approximately 0.940197. (C) 2017 Elsevier Inc. All rights reserved.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Mathematics
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Kim, Seunghyeok - Korea Inst Adv Study - Corea del Sur
Korea Institute for Advanced Study - Corea del Sur
2 MUSSO-POLLA, MONICA Mujer Pontificia Universidad Católica de Chile - Chile
Facultad de Matemáticas - Chile
3 Wei, Juncheng Hombre UNIV BRITISH COLUMBIA - Canadá
Chinese Univ Hong Kong - China
The University of British Columbia - Canadá
Chinese University of Hong Kong - Hong Kong
Chinese University of Hong Kong - China

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
FONDECYT
Fondo Nacional de Desarrollo Científico y Tecnológico
Natural Sciences and Engineering Research Council of Canada
Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica
NSERC of Canada
Millennium Nucleus Center for Analysis of PDE
Pontifical Catholic University of Chile
Pennsylvania Department of Education
University of British Columbia
Universita di Torino
NSERC RGPIN435557-13 of Canada
University of British Columbia and Universit?

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
S. Kim is indebted to Professor M. d. M. Gonzalez and Dr. W. Choi for their valuable comments. Also, part of the paper was written when he was visiting the University of British Columbia and Universita di Torino. He appreciates the both institutions, and especially Professor S. Terracini, for their hospitality and financial support. He was supported by FONDECYT Grant 3140530 while he worked in Pontifical Catholic University of Chile. The research of M. Musso has been partly supported by FONDECYT Grant 1160135 and Millennium Nucleus Center for Analysis of PDE, NC130017. The research of J. Wei is partially supported by NSERC RGPIN435557-13 of Canada.
S. Kim is indebted to Professor M. d. M. Gonz?lez and Dr. W. Choi for their valuable comments. Also, part of the paper was written when he was visiting the University of British Columbia and Universit? di Torino. He appreciates the both institutions, and especially Professor S. Terracini, for their hospitality and financial support. He was supported by FONDECYT Grant 3140530 while he worked in Pontifical Catholic University of Chile. The research of M. Musso has been partly supported by FONDECYT Grant 1160135 and Millennium Nucleus Center for Analysis of PDE, NC130017. The research of J. Wei is partially supported by NSERC RGPIN435557-13 of Canada.

Muestra la fuente de financiamiento declarada en la publicación.