Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.AIM.2017.09.014 | ||||
| Año | 2017 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Finite topology self-translating surfaces for the mean curvature flow constitute a key element in the analysis of Type II singularities from a compact surface because they arise as limits after suitable blow-up scalings around the singularity. We prove the existence of such a surface M subset of R-3 that is orientable, embedded, complete, and with three ends asymptotically paraboloidal. The fact that M is self-translating means that the moving surface S(t) = M + te(z) evolves by mean curvature flow, or equivalently, that M satisfies the equation H-M = V.e(z) where H-M denotes mean curvature, v is a choice of unit normal to M, and e(z) is a unit vector along the z-axis. This surface M is in correspondence with the classical three end Costa-Hoffman-Meeks minimal surface with large genus, which has two asymptotically catenoidal ends and one planar end, and a long array of small tunnels in the intersection region resembling a periodic Scherk surface. This example is the first non-trivial one of its kind, and it suggests a strong connection between this problem and the theory of embedded complete minimal surfaces with finite total curvature. (C) 2017 Elsevier Inc. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | DAVILA-BONCZOS, JUAN DIEGO | Hombre |
Universidad de Chile - Chile
|
| 2 | DEL PINO-MANRESA, MANUEL ADRIAN | Hombre |
Universidad de Chile - Chile
|
| 3 | Nguyen, XH | - |
Iowa State Univ - Estados Unidos
|
| 3 | Nguyen, Xuan Hien | - |
Iowa State University - Estados Unidos
Iowa State Univ - Estados Unidos |
| Fuente |
|---|
| FONDECYT |
| Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica |
| Fondo Nacional de Desarrollo CientÃfico, Tecnológico y de Innovación Tecnológica |
| Fondo Basal CMM |
| Wide Mienio CAPDE |
| Fondo Basal CIVIM |
| Agradecimiento |
|---|
| We would like to thank Sigurd Angenent, Nikolaos Kapouleas, Frank Pacard and Juncheng Wei for useful conversations. The first and second authors have been supported by grants FONDECYT 1130360 and 1150066, Fondo Basal CMM and by Wide Mienio CAPDE NC130017. |
| We would like to thank Sigurd Angenent, Nikolaos Kapouleas, Frank Pacard and Juncheng Wei for useful conversations. The first and second authors have been supported by grants FONDECYT 1130360 and 1150066 , Fondo Basal CMM and by Núcleo Mienio CAPDE NC130017 . |