Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



A Robust profit measure for binary classification model evaluation
Indexado
WoS WOS:000414107100013
Scopus SCOPUS_ID:85029799011
DOI 10.1016/J.ESWA.2017.09.045
Año 2018
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Using profit-based evaluation measures is a necessity in business-oriented contexts, as they aid companies in making cost-optimal decisions. Among the measures that effectively include the true nature of costs and benefits in binary classification, the expected maximum profit (EMP) has been used successfully for churn prediction and credit scoring, and defined in general for binary classification problems. However, despite its competitive results against the most frequently used measures, the EMP relies on a fixed probability distribution of costs and benefits, the range of which in real applications is not entirely known. In this paper, we propose to extend this measure by adding random shocks to these distributions. We call this new measure the R-EMP, following the convention of the analogous EMP measure. Our metric adds a stochastic component to each point of the cost-benefit distributions, assuming that costs and benefits have a fixed probability, but its distribution range is subject to an external shock, which can be different for each cost or benefit. The experimental set-up is focused on a credit scoring application using a dataset of a Chilean financial institution, with the attribute selection for a logistic regression being accomplished using the AUC, EMP, H-measure, and R-EMP as the selection criteria. The results indicate that the R-EMP measure is the most robust metric for achieving the greatest profit for the company under uncertain external conditions. (C) 2017 Elsevier Ltd. All rights reserved.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Artificial Intelligence
Engineering, Electrical & Electronic
Operations Research & Management Science
Scopus
Computer Science Applications
Artificial Intelligence
Engineering (All)
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 GARRIDO-CESPEDES, FRANCO Hombre Universidad de Talca - Chile
2 Verbeke, Wouter Hombre Vrije Univ Brussel - Bélgica
Vrije Universiteit Brussel - Bélgica
3 BRAVO-ROMAN, CRISTIAN DANILO Hombre Univ Southampton - Reino Unido
University of Southampton - Reino Unido

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
CONICYT FONDECYT

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
We acknowledge the support of Conicyt Fondecyt initiation into research 11140264.
We acknowledge the support of Conicyt Fondecyt initiation into research 11140264 .

Muestra la fuente de financiamiento declarada en la publicación.