Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Computer Vision for High-Throughput Quantitative Phenotyping: A Case Study of Grapevine Downy Mildew Sporulation and Leaf Trichomes
Indexado
WoS WOS:000415103500012
Scopus SCOPUS_ID:85035199877
DOI 10.1094/PHYTO-04-17-0137-R
Año 2017
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Quantitative phenotyping of downy mildew sporulation is frequently used in plant breeding and genetic studies, as well as in studies focused on pathogen biology such as chemical efficacy trials. In these scenarios, phenotyping a large number of genotypes or treatments can be advantageous but is often limited by time and cost. We present a novel computational pipeline dedicated to estimating the percent area of downy mildew sporulation from images of inoculated grapevine leaf discs in a manner that is time and cost efficient. The pipeline was tested on images from leaf disc assay experiments involving two F-1 grapevine families, one that had glabrous leaves (Vitis rupestris B38 x 'Horizon' [RH]) and another that had leaf trichomes (Horizon x V. cinerea B9 [HC]). Correlations between computer vision and manual visual ratings reached 0.89 in the RH family and 0.43 in the HC family. Additionally, we were able to use the computer vision system prior to sporulation to measure the percent leaf trichome area. We estimate that an experienced rater scoring sporulation would spend at least 90% less time using the computer vision system compared with the manual visual method. This will allow more treatments to be phenotyped in order to better understand the genetic architecture of downy mildew resistance and of leaf trichome density. We anticipate that this computer vision system will find applications in other pathosystems or traits where responses can be imaged with sufficient contrast from the background.

Revista



Revista ISSN
Phytopathology 0031-949X

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Plant Sciences
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Divilov, Konstantin Hombre CORNELL UNIV - Estados Unidos
Cornell University - Estados Unidos
2 Wiesner-Hanks, Tyr - CORNELL UNIV - Estados Unidos
Cornell University - Estados Unidos
3 BARBA-BURGOS, PAOLA LEONOR Mujer CORNELL UNIV - Estados Unidos
Cornell University - Estados Unidos
Instituto de Investigaciones Agropecuarias - Chile
4 Cadle-Davidson, Lance Hombre USDA ARS - Estados Unidos
United States Department of Agriculture - Estados Unidos
5 REISCH, BRUCE, I Hombre CORNELL UNIV - Estados Unidos
Instituto de Investigaciones Agropecuarias - Chile
Cornell University - Estados Unidos

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Origen de Citas Identificadas



Muestra la distribución de países cuyos autores citan a la publicación consultada.

Citas identificadas: Las citas provienen de documentos incluidos en la base de datos de DATACIENCIA

Citas Identificadas: 13.33 %
Citas No-identificadas: 86.67 %

Muestra la distribución de instituciones nacionales o extranjeras cuyos autores citan a la publicación consultada.

Citas identificadas: Las citas provienen de documentos incluidos en la base de datos de DATACIENCIA

Citas Identificadas: 13.33 %
Citas No-identificadas: 86.67 %

Financiamiento



Fuente
U.S. Department of Agriculture
Michael Nolan Endowment Fund
Lake Erie Regional Grape Processor's Fund
New York Wine & Grape Foundation
Charles R. Bullis Plant Hybridization Endowment
Federal Capacity Funds
United States Department of Agriculture-National Institute for Food and Agriculture Specialty Crop Research Initiative
National Institute for Food and Agriculture Specialty Crop Research Initiative

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
We thank T. Palleja Cabre for showing us the efficacy of using the blue layer for detection of disease symptoms; K. Wenzel for providing the source code for the Wallis filter; M. Colizzi and S. Luce for vineyard maintenance; M. Colizzi, C. Herbert, A. Green, H. Kasinathan, C. Kumkey, H. Martens, A. Repka, M. Schaub, and M. J. Welser for help in collecting leaves and plating leaf discs; D. Gadoury, M. Schaub, and W. Wilcox for supplying leaves for propagation of the P. viticola isolate; and M. Gore for constructive feedback on the manuscript. This research was supported by the United States Department of Agriculture-National Institute for Food and Agriculture Specialty Crop Research Initiative (award number 2011-51181-30635), The New York Wine & Grape Foundation, Federal Capacity Funds, and the Lake Erie Regional Grape Processor's Fund. Graduate Assistantship support for K. Divilov was provided by the Charles R. Bullis Plant Hybridization Endowment and the Michael Nolan Endowment Fund.
We thank T. Pallejà Cabré for showing us the efficacy of using the blue layer for detection of disease symptoms; K. Wenzel for providing the source code for the Wallis filter; M. Colizzi and S. Luce for vineyard maintenance; M. Colizzi, C. Herbert, A. Green, H. Kasinathan, C. Kumkey, H. Martens, A. Repka, M. Schaub, and M. J. Welser for help in collecting leaves and plating leaf discs; D. Gadoury, M. Schaub, and W. Wilcox for supplying leaves for propagation of the P. viticola isolate; and M. Gore for constructive feedback on the manuscript. This research was supported by the United States Department of Agriculture–National Institute for Food and Agriculture Specialty Crop Research Initiative (award number 2011-51181-30635), The New York Wine & Grape Foundation, Federal Capacity Funds, and the Lake Erie Regional Grape Processor’s Fund. Graduate Assistantship support for K. Divilov was provided by the Charles R. Bullis Plant Hybridization Endowment and the Michael Nolan Endowment Fund.

Muestra la fuente de financiamiento declarada en la publicación.