Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.PMCJ.2017.09.007 | ||||
| Año | 2017 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Ambient Intelligence (AmI) is a user-centric paradigm offering self-adaptive environments and tailor-made services. A fundamental component of an AmI environment is a service allocation system. In this paper, we present a mathematical model for service allocation in a multiagent-based AmI environment that exhibits heterogeneous resources and energy constraints. We also propose a heuristic, probabilistic search algorithm for efficiently solving the provisioning problem. Results show that our model achieves optimal service allocations that trade-off the number of services offered by the agents and their energy consumption, thereby reducing the overall response time of the AmI environment and its energy use. (C) 2017 Elsevier B.V. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | RESTREPO-MEDINA, SILVIA ELENA | Mujer |
Universidad de Concepción - Chile
|
| 2 | PEZOA-NUNEZ, JORGE EDGARDO | Hombre |
Universidad de Concepción - Chile
|
| 3 | Naeini, Mahshid R. | - |
UNIV S FLORIDA - Estados Unidos
University of South Florida, Tampa - Estados Unidos |
| Fuente |
|---|
| CONICYT |
| Comisión Nacional de Investigación Científica y Tecnológica |
| Comisión Nacional de Investigación CientÃfica y Tecnológica |
| Basal Project |
| Agradecimiento |
|---|
| S. E. Restrepo and J. E. Pezoa acknowledge the support of Basal Project FB0824. S. E. Restrepo acknowledges the financial support of the CONICYT Grant - PCHA/Doctorado Nacional/2014-63140151. |
| S. E. Restrepo and J. E. Pezoa acknowledge the support of Basal Project FB0824 . S. E. Restrepo acknowledges the financial support of the CONICYT Grant - PCHA/Doctorado Nacional/2014-63140151 . |