Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.COMPFLUID.2017.10.001 | ||||
| Año | 2017 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
A new method for the numerical solution of ODEs is presented. This approach is based on an approximate formulation of the Taylor methods that has a much easier implementation than the original Taylor methods, since only the functions in the ODEs, and not their derivatives, are needed, just as in classical Runge-Kutta schemes. Compared to Runge-Kutta methods, the number of function evaluations to achieve a given order is higher, however with the present procedure it is much easier to produce arbitrary high order schemes, which may be important in some applications. In many cases the new approach leads to an asymptotically lower computational cost when compared to the Taylor expansion based on exact derivatives. The numerical results that are obtained with our proposal are satisfactory and show that this approximate approach can attain results as good as the exact Taylor procedure with less implementation and computational effort. (C) 2017 Elsevier Ltd. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Baeza, Antonio | Hombre |
Univ Valencia - España
University of Valencia - España Universitat de València - España |
| 2 | Boscarino, S. | Hombre |
Univ Catania - Italia
Università degli Studi di Catania - Italia |
| 3 | Mulet, Pep | - |
Univ Valencia - España
University of Valencia - España Universitat de València - España |
| 4 | Russo, Giovanni | Hombre |
Univ Catania - Italia
Università degli Studi di Catania - Italia |
| 5 | ZORIO-VENTURA, DAVID | Hombre |
Universidad de Concepción - Chile
|
| Fuente |
|---|
| Ministerio de Economía y Competitividad |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica |
| Spanish MINECO |
| Fondecyt Project |
| Horizon 2020 |
| interfaces |
| National Group for Scientific Computing INdAM-GNCS |
| National Group for Scientific Computing INdAM-GNCS project: Numerical methods for hyperbolic and kinetic equation and applications |
| ITN-ETN Horizon Project ModCompShock, Modeling and Computation on Shocks and Interfaces |
| ITN-ETN Horizon 2020 |
| Agradecimiento |
|---|
| Antonio Baeza, Pep Mulet and David Zorio are supported by Spanish MINECO grant MTM 2014-54388-P. David Zorio is also supported by Fondecyt project 3170077. Giovanni Russo and Sebastiano Boscarino have been partially supported by ITN-ETN Horizon 2020 Project ModCompShock, Modeling and Computation on Shocks and Interfaces, Project Reference 642768, by the National Group for Scientific Computing INdAM-GNCS project 2017: Numerical methods for hyperbolic and kinetic equation and applications. |
| Antonio Baeza, Pep Mulet and David Zorío are supported by Spanish MINECO grant MTM 2014-54388-P . David Zorío is also supported by Fondecyt project 3170077. Giovanni Russo and Sebastiano Boscarino have been partially supported by ITN-ETN Horizon 2020 Project ModCompShock, Modeling and Computation on Shocks and Interfaces, Project Reference 642768, by the National Group for Scientific Computing INdAM-GNCS project 2017: Numerical methods for hyperbolic and kinetic equation and applications. |