Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.22203/ECM.V034A21 | ||||
| Año | 2017 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Disease-modifying osteoarthritis drugs (DMOADs) should reach their intra-tissue target sites at optimal doses for clinical efficacy. The dense, negatively charged matrix of cartilage poses a major hindrance to the transport of potential therapeutics. In this work, electrostatic interactions were utilised to overcome this challenge and enable higher uptake, full-thickness penetration and enhanced retention of dexamethasone (Dex) inside rabbit cartilage. This was accomplished by using the positively charged glycoprotein avidin as nanocarrier, conjugated to Dex by releasable linkers. Therapeutic effects of a single intra-articular injection of low dose avidin-Dex (0.5 mg Dex) were evaluated in rabbits 3 weeks after anterior cruciate ligament transection (ACLT). Immunostaining confirmed that avidin penetrated the full cartilage thickness and was retained for at least 3 weeks. Avidin-Dex suppressed injury-induced joint swelling and catabolic gene expression to a greater extent than free Dex. It also significantly improved the histological score of cell infiltration and morphogenesis within the periarticular synovium. Micro-computed tomography confirmed the reduced incidence and volume of osteophytes following avidin-Dex treatment. However, neither treatment restored the loss of cartilage stiffness following ACLT, suggesting the need for a combinational therapy with a pro-anabolic factor for enhancing matrix biosynthesis. The avidin dose used caused significant glycosaminoglycan (GAG) loss, suggesting the use of higher Dex : avidin ratios in future formulations, such that the delivered avidin dose could be much less than that shown to affect GAGs. This charge-based delivery system converted cartilage into a drug depot that could also be employed for delivery to nearby synovium, menisci and ligaments, enabling clinical translation of a variety of DMOADs.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Grodzinsky, A. J. | Hombre |
Northeastern Univ - Estados Unidos
MIT - Estados Unidos Northeastern University - Estados Unidos Massachusetts Institute of Technology - Estados Unidos |
| 2 | De la Vega, R. E. | - |
Harvard Med Sch - Estados Unidos
Mayo Clin - Estados Unidos Harvard Medical School - Estados Unidos Mayo Clinic - Estados Unidos |
| 3 | SCHEU-GONCALVES, MAXIMILIANO | Hombre |
Harvard Med Sch - Estados Unidos
Clínica Alemana - Chile Harvard Medical School - Estados Unidos Clmica Alemana de Santiago - Chile |
| 4 | Varady, N. H. | - |
MIT - Estados Unidos
Massachusetts Institute of Technology - Estados Unidos |
| 5 | Yannatos, I. A. | - |
MIT - Estados Unidos
Massachusetts Institute of Technology - Estados Unidos |
| 6 | Brown, L. A. | - |
Harvard Med Sch - Estados Unidos
Harvard Medical School - Estados Unidos |
| 7 | Krishnan, Y. | - |
MIT - Estados Unidos
Massachusetts Institute of Technology - Estados Unidos |
| 8 | Fitzsimons, T. J. | - |
Harvard Med Sch - Estados Unidos
Harvard Medical School - Estados Unidos |
| 8 | Fitesimons, T. J. | - |
Harvard Medical School - Estados Unidos
|
| 9 | Bhattacharya, P. | - |
MIT - Estados Unidos
Massachusetts Institute of Technology - Estados Unidos |
| 10 | Frank, E. H. | - |
MIT - Estados Unidos
Massachusetts Institute of Technology - Estados Unidos |
| 11 | Grodzinsky, A. J. | Hombre |
Northeastern Univ - Estados Unidos
MIT - Estados Unidos Northeastern University - Estados Unidos Massachusetts Institute of Technology - Estados Unidos |
| 12 | Porter, Ryan M. | Hombre |
Harvard Med Sch - Estados Unidos
Univ Arkansas Med Sci - Estados Unidos Harvard Medical School - Estados Unidos University of Arkansas for Medical Sciences - Estados Unidos |
| Fuente |
|---|
| National Institutes of Health |
| Klarman Family Foundation |
| Colorado State University |
| National Institute of Arthritis and Musculoskeletal and Skin Diseases |
| National Institute of Biomedical Imaging and Bioengineering |
| NIH/NIAMS |
| MIT Deshpande Centre for Technological Innovation |
| NSF Materials Research Science and Engineering Centres (MRSEC) |
| NIH/NIBIB |
| Materials Research Science and Engineering Center, Harvard University |
| Deshpande Center for Technological Innovation, Massachusetts Institute of Technology |
| Agradecimiento |
|---|
| This work was funded in part by grants from the MIT Deshpande Centre for Technological Innovation, Klarman Family Foundation, NSF Materials Research Science and Engineering Centres (MRSEC) grant DMR1419807, NIH/NIBIB grant EB017755 and NIH/NIAMS grants AR057105 and AR060331. We thank Dr David Hart and Dr Bryan Heard (University of Calgary) and Dr Tammy Haut-Donahue (Colorado State University) for their advice on elements of the rabbit model. Special thanks go to Dr Elisabeth Ferreira for guidance on qRT-PCR analysis. |
| This work was funded in part by grants from the MIT Deshpande Centre for Technological Innovation, Klarman Family Foundation, NSF Materials Research Science and Engineering Centres (MRSEC) grant DMR1419807, NIH/NIBIB grant EB017755 and NIH/ NIAMS grants AR057105 and AR060331. We thank Dr David Hart and Dr Bryan Heard (University of Calgary) and Dr Tammy Haut-Donahue (Colorado State University) for their advice on elements of the rabbit model. Special thanks go to Dr Elisabeth Ferreira for guidance on qRT-PCR analysis. |