Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1515/CMAM-2017-0030 | ||||
| Año | 2018 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We consider an optimal control problem that entails the minimization of a nondifferentiable cost functional, fractional diffusion as state equation and constraints on the control variable. We provide existence, uniqueness and regularity results together with first-order optimality conditions. In order to propose a solution technique, we realize fractional diffusion as the Dirichlet-to-Neumann map for a nonuniformly elliptic operator and consider an equivalent optimal control problem with a nonuniformly elliptic equation as state equation. The rapid decay of the solution to this problem suggests a truncation that is suitable for numerical approximation. We propose a fully discrete scheme: piecewise constant functions for the control variable and first-degree tensor product finite elements for the state variable. We derive a priori error estimates for the control and state variables.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | OTAROLA-PASTEN, ENRIQUE HOMERO | Hombre |
Universidad Técnica Federico Santa María - Chile
|
| 2 | Salgado, Abner J. | Hombre |
UNIV TENNESSEE - Estados Unidos
The University of Tennessee, Knoxville - Estados Unidos |
| Fuente |
|---|
| CONICYT through FONDECYT project |
| NSF grant |
| Directorate for Mathematical and Physical Sciences |