Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.FUSENGDES.2017.05.042 | ||||
| Año | 2017 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Experiments in thermonuclear fusion generate thousands of signals. Machine learning techniques have shown to be very suitable for implementing pattern recognition systems to fusion databases. The huge amount of data involves performing the analysis in high-dimensional spaces. This makes difficult the searching of patterns with similar properties, which normally produces overfitting. During last years, the use of boosting algorithms has become very popular for avoiding overfitting and building generalized data-driven models. Boosting allows achieving a highly accurate, robust and fast classification by combining many relatively simple rules. In this work, we propose the use of Adaboost algorithm to classify Thomson Scattering images of the fusion device. The results are compared with previous works on similar databases. (C) 2017 Elsevier B.V. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | FARIAS-CASTRO, GONZALO ALBERTO | Hombre |
Pontificia Universidad Católica de Valparaíso - Chile
|
| 2 | Dormido-Canto, Sebastian | Hombre |
UNED - España
Universidad Nacional de Educación a Distancia - España |
| 3 | Vega, J. | Hombre |
CIEMAT - España
Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas - España |
| 4 | Martinez, Ismael | Hombre |
Pontificia Universidad Católica de Valparaíso - Chile
|
| 5 | Alfaro, Luis | Hombre |
Pontificia Universidad Católica de Valparaíso - Chile
|
| 6 | MARTINEZ-VIDAL, FRANCISCO | Hombre |
UNED - España
Universidad Nacional de Educación a Distancia - España |