Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1134/S1560354718010070 | ||||
| Año | 2018 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In this paper we consider a symmetric restricted circular three-body problem on the surface S-2 of constant Gaussian curvature kappa = 1. This problem consists in the description of the dynamics of an infinitesimal mass particle attracted by two primaries with identical masses, rotating with constant angular velocity in a fixed parallel of radius a is an element of(0, 1). It is verified that both poles of S-2 are equilibrium points for any value of the parameter a. This problem is modeled through a Hamiltonian system of two degrees of freedom depending on the parameter a. Using results concerning nonlinear stability, the type of Lyapunov stability (nonlinear) is provided for the polar equilibria, according to the resonances. It is verified that for the north pole there are two values of bifurcation (on the stability) a = root 4-root 2/2 and a = root 2/3, while the south pole has one value of bifurcation a = root 3/2.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Andrade, Jaime | Hombre |
Universidad del Bío Bío - Chile
|
| 2 | VIDAL-DIAZ, CLAUDIO | Hombre |
Universidad del Bío Bío - Chile
|
| Fuente |
|---|
| Comisión Nacional de Investigación Científica y Tecnológica |
| CONICYT fellowship (Chile) |
| Agradecimiento |
|---|
| Jaime Andrade was supported by a CONICYT fellowship (Chile). This paper is part of Jaime Andrade Ph.D. thesis in the Program Doctorado en Matematica Aplicada, Universidad del Bio-Bio (Chile). |
| Jaime Andrade was supported by a CONICYT fellowship (Chile).This paper is part of Jaime Andrade Ph.D. thesis in the Program Doctorado en Matemática Aplicada, Universidad del Bío-Bío (Chile). |