Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Effect of temperature and CuO-nanoparticle concentration on the thermal conductivity and viscosity of an organic phase-change material
Indexado
WoS WOS:000424716500086
Scopus SCOPUS_ID:85039708552
DOI 10.1016/J.IJHEATMASSTRANSFER.2017.12.106
Año 2018
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



The main results of an experimental study of the effect of temperature and nanoparticle concentration on thermal conductivity and viscosity of a nanofluid are shown. The nanofluid was prepared with Octadecane, an alkane hydrocarbon with the chemical formula CH3(CF2)(16)CH3, as a base fluid and 75nm CuO spherical nanoparticles. Since the base fluid is a phase change material (PCM) to be used in thermal storage applications, the engineered nanofluid is referred to as Nano-PCM. Three Nano-PCMs were prepared by the two-step method (2.5% w/v, 5.0% wiv, and 10.0% wiv). In order to increase the stability of the Nano-PCM, the surface of the CuO nanoparticles were modified with Sodium oleate, and it was verified by IR analysis. The modified CuO nanoparticles were dispersed with an ultrasonic horn. The thermal conductivity was measured with a thermal properties analyzer in the temperature range of 30-40 degrees C. The viscosity was measured in the temperature range of 30-55 degrees C. The results for the Nano-PCM showed that thermal conductivity is almost constant in the analyzed temperature range, and the viscosity decreases non-linearly with temperature. With respect to the effect of nanoparticle concentration, both thermal conductivity and viscosity increased with nanoparticle concentration. Thermal conductivity increased up to 9% with respect to the base fluid, and viscosity increased up to 60%, in both cases with increasing concentration. Finally, the viscosity measurements for different deformation rates (30-80 RPM) showed that the addition of nanoparticles modifies the rheological behavior of the base fluid, from a Newtonian to a shear thinning (power-law) non-Newtonian behavior. (C) 2017 Elsevier Ltd. All rights reserved.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Thermodynamics
Engineering, Mechanical
Mechanics
Scopus
Mechanical Engineering
Condensed Matter Physics
Fluid Flow And Transfer Processes
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 AGUILA, BASTIAN, V - Universidad de Santiago de Chile - Chile
2 VASCO-CALLE, DIEGO ANDRES Hombre Universidad de Santiago de Chile - Chile
3 Galvez, Paula P. Mujer Universidad de Santiago de Chile - Chile
3 Galvez P, Paula Mujer Universidad de Santiago de Chile - Chile
4 ZAPATA-RAMIREZ, PAULA ANDREA Mujer Universidad de Santiago de Chile - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
CONICYT/FONDECYT
Fondo Nacional de Desarrollo Científico y Tecnológico
Comisión Nacional de Investigación Científica y Tecnológica
CONICYT/FONDECYT Project

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was funded by the CONICYT/Fondecyt Project 11130168.
This work was funded by the CONICYT/Fondecyt Project 11130168 .

Muestra la fuente de financiamiento declarada en la publicación.