Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Extreme Learning Machine Models for Classifying the LED Source in a 2D Visible Light Positioning Database
Indexado
Scopus SCOPUS_ID:105003701343
DOI 10.1049/OTE2.70004
Año 2025
Tipo

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



In recent years, there has been a surge in interest in indoor positioning systems that use visible light communication (VLC) technology combined with light-emitting diodes (LEDs). These systems have gained attention because of their ability to offer high bandwidth, precise localisation, and potential for wireless communication to extend into the visible light spectrum in the future, making VLC a notable candidate. Furthermore, the visible light spectrum proves advantageous in the industrial internet of things setting, as it does not offer electromagnetic interference as in radio frequency (RF) spectrum. This paper analyses a database made up of approximately 356 image samples obtained from a CMOS sensor. The database encompasses eight distinct classes, each demonstrating frequency (bit rate) variations ranging from 1 to 4.5 kHz in 500 Hz increments. The aim is to implement this database for classification applications as a first stage with several neural networks based on extreme learning machines (ELM) in various forms: (1) standard ELM, (2) regularised ELM, (3) weighted ELM in two configurations, and (4) multilayer ELM with 2 and 3 hidden layers. The findings of this study reveal that standard ELM is particularly promising, achieving more than 99% in accuracy and G-mean, while maintaining low computational complexity (measured in tenths of seconds) when compared to convolutional neural networks and multilayer perceptrons, which offer superior performance, however at the cost of significant computational demands.

Revista



Revista ISSN
Iet Optoelectronics 1751-8768

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Telecommunications
Engineering, Electrical & Electronic
Optics
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Zabala-Blanco, David Hombre Universidad Católica del Maule - Chile
2 AZURDIA-MEZA, CESAR AUGUSTO Hombre Universidad de Chile - Chile
3 Lobos Soto, Benjamín - Universidad Católica del Maule - Chile
4 Soto, Ismael - Universidad de Santiago de Chile - Chile
5 Palacios Jativa, Pablo Hombre Universidad Diego Portales - Chile
6 Ahumada-García, Roberto Hombre Universidad Católica del Maule - Chile
7 Ijaz, Muhammad Hombre Manchester Metropolitan University - Reino Unido

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Fondo Nacional de Desarrollo Científico y Tecnológico
Universidad Diego Portales
DOCTORADO
ANID-Subdirección de Capital Humano
ANID Vinculación Internacional
Escuela de Informática y Telecomunicaciones

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Project FONDECYT Regular 1211132; ANID Vinculaci\u00F3n Internacional FOVI240009; Project FONDECYT Iniciaci\u00F3n 11240799; STIC-AMSUD AMSUD220026; ANID PFCHA/Beca de Doctorado Nacional/2019 21190489; Escuela de Inform\u00E1tica y Telecomunicaciones, Universidad Diego Portales; UDLA Telecommunications Engineering Degree FICA, UDLA; CYTED AgIoT Project (520rt0011); CORFO CoTH2O \u2018Consorcio de Gesti\u00F3n de Recursos H\u00EDdricos para la Macrozona Centro-Sur\u2019 (20CTECGH-145896); ANID-Basal AC3E FB0008; and ANID-Subdirecci\u00F3n de Capital Humano/Doctorado Nacional/2024-21241043. DICYT Regular 062413SG. ANID Sub-Directorate of Human Capital under the National Doctorate Program, 2024-21241043.
This work was supported by Project ANID Vinculaci\u00F3n Internacional (FOVI240009). Funding:

Muestra la fuente de financiamiento declarada en la publicación.