Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1109/WCNC61545.2025.10978239 | ||
| Año | 2025 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
This paper analyzes the impact of specular signal reflections on the accuracy of Received Signal Strength (RSS)-based localization for Internet of Things (IoT) devices using the weighted least squares (WLS) regression algorithm within a two-ray propagation channel. Simulations with realistic WiFi/BLE settings, considering distance, antenna heights, and carrier frequency, reveal that localization accuracy is significantly influenced by deep fades caused by surface reflections, which depend on the geometry of anchor-target positions. A pseudo-outlier elimination approach based on feasible localization distances effectively mitigates this issue, significantly reducing localization error. These findings offer practical insights into the performance of WLS-based IoT localization in two-ray environments and lay the groundwork for GPS-free or GPS-denied localization systems in challenging scenarios, such as overwater environments, where two-ray propagation is predominant.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Huidobro, Cristobal | - |
Pontificia Universidad Católica de Chile - Chile
|
| 2 | Gaitán, Miguel Gutiérrez | - |
Pontificia Universidad Católica de Chile - Chile
Cister Research Centre - Portugal |
| 3 | Oberli, Christian | - |
Pontificia Universidad Católica de Chile - Chile
|
| 4 | Pettorru, Giovanni | - |
Università degli Studi di Cagliari - Italia
|
| 5 | Martaló, Marco | - |
Università degli Studi di Cagliari - Italia
|
| 6 | Pilloni, Virginia | - |
Università degli Studi di Cagliari - Italia
|
| Fuente |
|---|
| Fundação para a Ciência e a Tecnologia |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Ministério da Ciência, Tecnologia e Ensino Superior |
| CISTER |
| Agradecimiento |
|---|
| This work was supported by the FONDECYT Iniciaci\u00F3n project No. 11241221 and the Competence Center START 4.0 under the Safepath project (CUP: J57H24000330004); also by the CISTER Research Unit (UIDP/ UIDB/04234/2020) through FCT/MCTES (Portuguese Foundation for Science and Technology) National Funds. |