Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1007/978-981-96-0235-3_29 | ||
| Año | 2025 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Software Engineering proposes several approaches for managing software production, from defining a domain to deploying the system for final use. Within those approaches are self-adaptive systems, which aim to manage variability dynamically while executing. Dynamic software product lines offer a solution by defining system variability. We present FMweb-K, a framework that improves variability management from design to execution. It integrates feature models, the MAPE-K loop, and variation points with adaptation rules linked to IoT sensors. We first validated the former through a proof of concept with a Java architecture and reconfiguration engine to manage variability using Docker. FMweb-K was validated through a proof of concept, comparing it to other solutions. Future research will employ deep learning to detect new points of runtime variation, seamlessly adding new system states.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Aguayo, Oscar | - |
Universidad de La Frontera - Chile
|
| 2 | Escobar, Francisco | - |
Universidad de La Frontera - Chile
|
| 3 | VASQUEZ-LAVIN, FELIPE ANTONIO | Hombre |
Universidad de La Frontera - Chile
|
| 4 | Sepúlveda, Samuel | - |
Universidad de La Frontera - Chile
|
| 5 | Mazo, Raúl | - |
ENSTA Bretagne - Francia
|