Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Machine-learning-based probabilistic forecasting of solar irradiance in Chile
Indexado
Scopus SCOPUS_ID:105008042074
DOI 10.5194/ASCMO-11-89-2025
Año 2025
Tipo

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



By the end of 2023, renewable sources covered 63.4% of the total electric-power demand of Chile, and, in line with the global trend, photovoltaic (PV) power showed the most dynamic increase. Although Chile's Atacama Desert is considered to be the sunniest place on Earth, PV power production, even in this area, can be highly volatile. Successful integration of PV energy into the country's power grid requires accurate short-term PV power forecasts, which can be obtained from predictions of solar irradiance and related weather quantities. Nowadays, in weather forecasting, the state-of-the-art approach is the use of ensemble forecasts based on multiple runs of numerical weather prediction models. However, ensemble forecasts still tend to be uncalibrated or biased, thus requiring some form of post-processing. The present work investigates probabilistic forecasts of solar irradiance for regions III and IV in Chile. For this reason, eight-member short-term ensemble forecasts of solar irradiance for the calendar year 2021 are generated using the Weather Research and Forecasting (WRF) model; these are then calibrated using the benchmark ensemble model output statistics (EMOS) method based on a censored Gaussian law and its machine-learning-based distributional regression network (DRN) counterpart. Furthermore, we also propose a neural-network-based post-processing method, resulting in improved eight-member ensemble predictions. All forecasts are evaluated against station observations for 30 locations in the study area, and the skill of post-processed predictions is compared to the raw WRF ensemble. Our case study confirms that all studied post-processing methods substantially improve both the calibration of probabilistic forecasts and the accuracy of point forecasts. Among the methods tested, the corrected ensemble exhibits the best overall performance. Additionally, the DRN model generally outperforms the corresponding EMOS approach.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Baran, Sándor - Debreceni Egyetem Informatikai Kar - Hungría
2 Marín, Julio C. - Universidad de Valparaíso - Chile
3 CUEVAS-AHUMADA, OMAR ENRIQUE Hombre Universidad de Valparaíso - Chile
4 Díaz, Mailiu - Universidad Nacional Andrés Bello - Chile
5 Szabó, Marianna - Debreceni Egyetem Informatikai Kar - Hungría
6 Nicolis, Orietta - Universidad Nacional Andrés Bello - Chile
7 Lakatos, Mária - Debreceni Egyetem Informatikai Kar - Hungría

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Universidad de Valparaíso
Nemzeti Kutatási Fejlesztési és Innovációs Hivatal

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The authors gratefully acknowledge the support of the S & T cooperation program of the National Research, Development and Innovation Office (grant no. 2021-1.2.4-T\u00C9T2021-00020). S\u00E1ndor Baran, M\u00E1ria Lakatos, and Marianna Szab\u00F3 were also supported by the National Research, Development and Innovation Office under grant no. K142849. Julio C\u00E9sar Mar\u00EDn and Omar Cuevas acknowledge the support of the Center of Atmospheric Studies and Climate Change of the University of Valpara\u00EDso, Chile. Last, but not least, the authors thank the two anonymous reviewers, whose constructive comments helped to improve the paper. This research has been supported by the National Research, Development and Innovation Office (grant nos. 2021-1.2.4-T\u00C9T-2021-00020 and K142849).
This research has been supported by the National Research, Development and Innovation Office (grant nos. 2021-1.2.4-T\u00C9T-2021-00020 and K142849).
The authors gratefully acknowledge the support of the S&T cooperation program of the National Research, Development and Innovation Office (grant no. 2021-1.2.4-T\u00C9T-2021-00020). S\u00E1ndor Baran, M\u00E1ria Lakatos, and Marianna Szab\u00F3 were also supported by the National Research, Development and Innovation Office under grant no. K142849. Julio C\u00E9sar Mar\u00EDn and Omar Cuevas acknowledge the support of the Center of Atmospheric Studies and Climate Change of the University of Valpara\u00EDso, Chile. Last, but not least, the authors thank the two anonymous reviewers, whose constructive comments helped to improve the paper.

Muestra la fuente de financiamiento declarada en la publicación.