Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Use of artificial intelligence to predict complications in degenerative thoracolumbar spine surgery: A systematic review Uso de inteligencia artificial para predecir complicaciones en cirugías de columna toracolumbar degenerativa: revisión sistemática
Indexado
Scopus SCOPUS_ID:105001815409
DOI 10.1016/J.RECOT.2025.02.007
Año 2025
Tipo

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Objective: We aim to conduct a systematic review of the literature to evaluate the effectiveness of artificial intelligence prediction models in predicting complications in adult patients undergoing surgery for degenerative thoracolumbar pathology compared with other commonly used prediction techniques. Methods: A systematic literature review was conducted in Medline/Pubmed, Cochrane Library, and Lilacs/Portal de la BVS to identify machine learning models in predicting complications in patients undergoing surgery for degenerative thoracolumbar spine pathology between January 1, 2000, and May 1, 2023. The risk of bias was assessed using the PROBAST tool. Study characteristics and outcomes focusing on general or specific complications were recorded. Results: A total of 2,341 titles were identified (763 were duplicates). Screening was performed on 1,578 titles, and 22 were selected for full-text reading, with 18 exclusions and 4 publications selected for the subsequent review. Additionally, 8 publications were included from other sources (Argentine Association of Orthopedics and Traumatology Library; manual citation search). In 5 (41.6%) articles, the effectiveness of artificial intelligence predictive models was compared with conventional techniques. All were globally classified as having a very high risk of bias. Due to heterogeneity in samples, outcomes of interest, and algorithm evaluation metrics, a meta-analysis was not performed. Conclusion: Although the available evidence is limited and carries a high risk of bias, the studies analysed suggest that these models may achieve promising performance in predicting complications, with area under the curve values mostly ranging from acceptable to excellent.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Ricciardi, G. - Sanatorio Guemes - Argentina
Centro Médico Integral Fitz Roy - Argentina
Hospital General De Agudos Teodoro Alvarez - Argentina
2 Cirillo Totera, J. I. - Hospital del Trabajador de Santiago - Chile
Universidad de Los Andes, Chile - Chile
Universidad Nacional Andrés Bello - Chile
3 Pons Belmonte, R. - Hospital Marcial Quiroga - Argentina
4 Romero Valverde, L. - Sanatorio Guemes - Argentina
5 López Muñoz, F. - Hospital del Trabajador de Santiago - Chile
6 Manríquez Díaz, A. - Clínica Francesa - Argentina

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.