Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1016/J.IJHYDENE.2025.04.218 | ||
| Año | 2025 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Recent increases in global energy demand have intensified the focus on clean and renewable energy sources, particularly hydrogen, which has seen rising demand over the last decade. However, low-emissions hydrogen production remains minimal due to high costs. Among promising alternatives, perovskite-type nanostructures like strontium titanate (STO) are considered effective photocatalysts for water splitting, with the limitation of absorbing light mainly in the UV spectrum. This limitation can be addressed by integrating it with ammonium vanadate bronze (NVO) and carbon dots (CDs). This work explores the synthesis and characterization of the heterostructure NH4V4O10/SrTiO3/CDs for hydrogen production, which is successfully synthesized using a hydrothermal method and characterized. Photoelectrocatalytic water splitting experiments revealed that the NVO/STO/CDs-2h electrode generates 19.9 μmol min−1 cm−2, four times more hydrogen under illuminated conditions than a non-modified electrode in darkness. Also, in photocatalytic experiments yields 6.7 μmol min−1 cm−2, 18 % more than NVO/STO/CDs-4h. This demonstrates that incorporating smaller CDs into the nanocomposite enhances light absorption, showcasing the potential of these materials for renewable energy applications.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Guzmán-de la Cerda, Diego | - |
Universidad Mayor - Chile
|
| 2 | Vera-Rojas, Gloria | - |
Universidad Tecnológica Metropolitana - Chile
|
| 3 | Adell, José F. | - |
Pontificia Universidad Católica de Chile - Chile
|
| 4 | Melo-Sanguinetti, Juan Pablo | - |
Universidad Mayor - Chile
|
| 5 | Varas-Concha, Felipe | - |
Universidad de Talca - Chile
|
| Fuente |
|---|
| Universidad Mayor |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Pontificia Universidad Católica de Chile |
| Agencia Nacional de Investigación y Desarrollo |
| Materials Science Laboratory |
| Agencia Nacional de Investi gación y Desarrollo ANID |
| Agradecimiento |
|---|
| The authors acknowledge the Center for Applied Nanotechnology (CNAP) at Universidad Mayor, the Coordination Chemistry and Electrocatalysis Laboratory of the Faculty of Chemistry at Pontificia Universidad Cat\u00F3lica de Chile, the Materials Science Laboratory of the Faculty of Physics at Pontificia Universidad Cat\u00F3lica de Chile, and the Millenium Institute on Green Ammonia as Energy Vector (MIGA) for providing the equipment and facilities necessary for this research in Chile. This work was supported by the Agencia Nacional de Investi gaci\u00F3n y Desarrollo ANID, Chile [FONDECYT iniciaci\u00F3n en la investigaci\u00F3n 11221224, 2022; and Project Ciencia 2030 C203020001, 2022]. |
| This work was supported by the Agencia Nacional de Investi gaci\u00F3n y Desarrollo ANID , Chile [ FONDECYT iniciaci\u00F3n en la investigaci\u00F3n 11221224 , 2022 ; and Project Ciencia 2030 C203020001 , 2022 ]. |