Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1016/J.CNSNS.2025.108942 | ||
| Año | 2025 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
This work presents a systematic characterization of the quasi-periodic dynamics of a uniaxial anisotropic magnetic nanoparticle under the influence of a time-varying external magnetic field. Using the Landau–Lifshitz–Gilbert (LLG) formalism, we analyze the response of the system as a function of key parameters, particularly focusing on the effects of magnetic anisotropy and dissipation. Through an extensive numerical exploration, we identify transitions between periodic, quasi-periodic, and chaotic regimes, employing Lyapunov exponents, isospike diagrams, Fourier spectra, and winding number calculations. The results reveal that the anisotropy parameter strongly influences the asymmetry of the dynamical states, leading to distinct behaviors along the easy and hard anisotropy axes. Additionally, at low dissipation, direct transitions between quasi-periodic and chaotic states emerge as a function of the external field, while at higher dissipation, periodic states dominate. The winding number analysis uncovers complex hierarchical structures, including self-similar step-like formations characteristic of the so-called Devil's staircase phenomenon, along with a granular transition mechanism between quasi-periodic and chaotic states. Furthermore, the role of initial conditions is explored, demonstrating the presence of multistability, where different attractors coexist depending on the initial configuration. These results contribute to a deeper understanding of the nonlinear magnetization dynamics in anisotropic nanoparticles and may serve as a reference for future studies exploring the influence of quasi-periodic behavior in spintronic systems.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Vélez, J. A. | - |
Donostia International Physics Center - España
Universidad del País Vasco - España |
| 2 | Pérez, L. M. | - |
Universidad de Tarapacá - Chile
|
| 3 | Pizarro, A. E. | - |
Universidad Católica del Maule - Chile
|
| 4 | Pedraja-Rejas, L. | - |
Universidad de Tarapacá - Chile
|
| 5 | SUAREZ-TAMARA, OMAR JAVIER | Hombre |
Universidad de Sucre - Colombia
|
| 6 | Hernandez-Garcia, Ruber | - |
Universidad Católica del Maule - Chile
|
| 7 | Barrientos, Ricardo J. | Hombre |
Universidad Católica del Maule - Chile
|
| 8 | Bragard, Jean | Hombre |
Universidad de Navarra - España
|
| 9 | LAROZE-NAVARRETE, DAVID NICOLAS | Hombre |
Universidad de Tarapacá - Chile
|
| 10 | Otxoa, R. M. | - |
Donostia International Physics Center - España
Hitachi Cambridge Laboratory - Reino Unido |
| Fuente |
|---|
| Ministerio de Economía y Competitividad |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Centers of excellence |
| Universidad de Navarra |
| Centro para el Desarrollo de la Nanociencia y la Nanotecnologia |
| Agencia Nacional de Investigación y Desarrollo |
| Universidad de Sucre |
| Convocatoria Nacional Subvención a Instalación en la Academia |
| Agradecimiento |
|---|
| LMP acknowledges financial support from ANID through Convocatoria Nacional Subvenci\u00F3n a Instalaci\u00F3n en la Academia Convocatoria A\u00F1o 2021 , Grant SA77210040 . JB acknowledges partial financial support from MINECO (Spain) research project with reference: PID2023-152610OB-C22 . RHG acknowledges partial financial support from ANID through FONDECYT 11220693 . RJB acknowledges partial financial support from ANID through FONDECYT 1200810 . DL acknowledges partial financial support from Centers of Excellence with BASAL/ANID financing , AFB220001 , CEDENNA. LMP and DL acknowledges partial financial support from ANID through FONDECYT 1240985 . Finally, LMP acknowledges the hospitality of Universidad de Navarra (Spain) and Universidad de Sucre (Colombia) were part of this work was written. |