Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1609/AAAI.V39I13.33529 | ||
| Año | 2025 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In perpetual voting, multiple decisions are made at different moments in time. Taking the history of previous decisions into account allows us to satisfy properties such as proportionality over periods of time. In this paper, we consider the following question: is there a perpetual approval voting method that guarantees that no voter is dissatisfied too many times? We identify a sufficient condition on voter behavior -which we call’bounded conflicts’ condition-under which a sublinear growth of dissatisfaction is possible. We provide a tight upper bound on the growth of dissatisfaction under bounded conflicts, using techniques from Kolmogorov complexity. We also observe that the approval voting with binary choices mimics the machine learning setting of prediction with expert advice. This allows us to present a voting method with sublinear guarantees on dissatisfaction under bounded conflicts, based on the standard techniques from prediction with expert advice.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Kozachinskiy, Alexander | - |
Centro Nacional de Inteligencia Artificial - Chile
|
| 2 | Shen, Alexander | - |
Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellie - Francia
|
| 3 | Steifer, Tomasz | - |
Institute of Fundamental Technological Research of the Polish Academy of Sciences - Polonia
Pontificia Universidad Católica de Chile - Chile |
| Fuente |
|---|
| Agencia Nacional de Investigación y Desarrollo |
| National Center for Artificial Intelligence CENIA |
| FLITTLA |
| Agradecimiento |
|---|
| Kozachinskiy is funded by the National Center for Artificial Intelligence CENIA FB210017, Basal ANID. Shen is funded by the FLITTLA ANR-21-CE48-0023 grant. Steifer received generous support from the Millennium Science Initiative Program - Code ICN17002 and the Agencia Nacional de Investigaci\u00F3n y Desarrollo grant no. 3230203. |