Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Link Prediction with Relational Hypergraphs
Indexado
Scopus SCOPUS_ID:105007990334
DOI
Año 2025
Tipo

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Link prediction with knowledge graphs has been thoroughly studied in graph machine learning, leading to a rich landscape of graph neural network architectures with successful applications. Nonetheless, it remains challenging to transfer the success of these architectures to inductive link prediction with relational hypergraphs, where the task is over k-ary relations, substantially harder than link prediction on knowledge graphs with binary relations only. In this paper, we propose a framework for link prediction with relational hypergraphs, empowering applications of graph neural networks on fully relational structures. Theoretically, we conduct a thorough analysis of the expressive power of the resulting model architectures via corresponding relational Weisfeiler-Leman algorithms and logical expressiveness. Empirically, we validate the power of the proposed architectures on various relational hypergraph benchmarks. The resulting model architectures substantially outperform every baseline for inductive link prediction and also lead to competitive results for transductive link prediction.

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Huang, Xingyue - University of Oxford - Reino Unido
2 Romero, Miguel - Pontificia Universidad Católica de Chile - Chile
3 Barceló, Pablo - Pontificia Universidad Católica de Chile - Chile
4 Bronstein, Michael M. - University of Oxford - Reino Unido
5 Ceylan, İsmail İlkan - University of Oxford - Reino Unido

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.