Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1109/ICCE63647.2025.10929989 | ||
| Año | 2025 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Leveraging UMAP for feature selection and Tree Physiology Optimization (TPO) for hyperparameter tuning, we proposed model for efficient water quality control in consumer electronics. We balanced the data with SMOTE from a Kaggle water quality dataset and using UMAP to find important characteristics. The TPO method then was used to maximize the parameters of the deep learning model. With an eye on few false positives, our algorithm was very accurate in spotting clean water. Still, the confusion matrix shows that there are difficulties precisely identifying dangerous water.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Gupta, Brij B. | - |
Asia University - Taiwán
VIZJA University - Polonia |
| 2 | Gaurav, Akshat | - |
Ronin Institute - Estados Unidos
|
| 3 | Bansal, Shavi | - |
Insights2Techinfo - India
|
| 4 | Wu, Jinsong | - |
Universidad de Chile - Chile
|
| 5 | Arya, Varsha | - |
Hong Kong Metropolitan University - Hong Kong
|
| 6 | Chui, Kwok Tai | - |
Hong Kong Metropolitan University - Hong Kong
|