Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1080/00036811.2024.2426216 | ||
| Año | 2025 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In this paper, we prove the local uniqueness of an inverse problem arising in the nonstationary flow of a nonhomogeneous incompressible asymmetric fluid in a bounded domain with a smooth boundary. The direct problem is an initial boundary value problem for a system where the unknowns are the velocity field of the fluid particles, the angular velocity of rotation of the fluid particles, the mass density of the fluid, and the pressure distribution. The inverse problem consists of recovering external forces to the linear and angular momentum equations by assuming a set of measurements as an integral overspecified condition. We introduce and prove several a priori estimates. We characterize the inverse problem solutions using an operator equation of a second kind, deduced from applying the Helmholtz decomposition. We prove several properties of the associated operator, which implies that the Tikhonov fixed point theorem hypothesis is valid. Then, we deduce the local unique solvability of the inverse problem.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Coronel, Aníbal | - |
Universidad del Bío Bío - Chile
|
| 2 | Fernandez-Cara, Enrique | Hombre |
Universidad de Sevilla - España
|
| 3 | Rojas-Medar, Marko | - |
Universidad de Tarapacá - Chile
|
| 4 | Tello, Alex | - |
Universidad de Antofagasta - Chile
|
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Universidad del Bío-Bío |
| Precast/Prestressed Concrete Institute |
| FAPEI |
| Agenția Națională pentru Cercetare și Dezvoltare |
| MEC-Atracción de Capital Humano Avanzado del Extranjero |
| NID |
| Agradecimiento |
|---|
| A.C. was partially supported by Universidad del B\u00EDo-B\u00EDo (Chile) through the research projects INES I+D 22-14 and FAPEI and the National Agency for Research and Development, ANID-Chile, through Fondo Nacional de Desarrollo Cient\u00EDfico y Tecnol\u00F3gico (FONDECYT) project 1230560. M.R-M was partially funded by the National Agency for Research and Development, ANID-Chile, through Fondo Nacional de Desarrollo Cient\u00EDfico y Tecnol\u00F3gico (FONDECYT) project 1240152. M.R-M and E.F-C were funded by the National Agency for Research and Development, ANID-Chile, through NID/PCI/MEC-Atracci\u00F3n de Capital Humano Avanzado del Extranjero No. 80170081 (Chile). Authors would like to thank anonymous referees for their valuable comments. |