Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.JMAA.2017.11.058 | ||||
| Año | 2018 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We consider the bi-dimensional Schrodinger operator with unidirectionally constant magnetic field, Ho, sometimes known as the "Iwatsuka Hamiltonian". This operator is analytically fibered, with band functions converging to finite limits at infinity. We first obtain the asymptotic behavior of the band functions and its derivatives. Using this results we give estimates on the current and on the localization of states whose energy value is close to a given threshold in the spectrum of Ho. In addition, for non-negative electric perturbations V we study the spectral properties of H-0 +/- V, by considering the Spectral Shift Function associated to the operator pair (H-0 +/- V, H-0). We compute the asymptotic behavior of the Spectral Shift Function at the thresholds, which are the only points where it can grow to infinity. (C) 2017 Elsevier Inc. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | MIRANDA-ROZAS, PABLO LAUTARO | Hombre |
Universidad de Santiago de Chile - Chile
|
| 2 | Popoff, Nicolas | Hombre |
Univ Bordeaux - Francia
Université de Bordeaux - Francia |
| Fuente |
|---|
| CONICYT FONDECYT |
| Consejo Nacional de Innovacion, Ciencia y Tecnologia |
| CONICYT Fondecyt Iniciacion |
| Agradecimiento |
|---|
| P. Miranda and.N. Popoff were partially supported by CONICYT FONDECYT Iniciacion 11150865. Nicolas Popoff would like to thank the PUC for its warm welcome during the month in which this work has been initiated. |
| P. Miranda and N. Popoff were partially supported by CONICYT FONDECYT Iniciación 11150865. Nicolas Popoff would like to thank the PUC for its warm welcome during the month in which this work has been initiated. |