Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1007/S10589-025-00669-W | ||
| Año | 2025 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Preconditioning is essential in iterative methods for solving linear systems. It is also the implicit objective in updating approximations of Jacobians in optimization methods, e.g., in quasi-Newton methods. We study a nonclassic matrix condition number, the ω-condition number, ω for short. ω is the ratio of: the arithmetic and geometric means of the singular values, rather than the largest and smallest for the classical κ-condition number. The simple functions in ω allow one to exploit first order optimality conditions. We use this fact to derive explicit formulae for (i) ω-optimal low rank updating of generalized Jacobians arising in the context of nonsmooth Newton methods; and (ii) ω-optimal preconditioners of special structure for iterative methods for linear systems. In the latter context, we analyze the benefits of ω for (a) improving the clustering of eigenvalues; (b) reducing the number of iterations; and (c) estimating the actual condition of a linear system. Moreover we show strong theoretical connections between the ω-optimal preconditioners and incomplete Cholesky factorizations, and highlight the misleading effects arising from the inverse invariance of κ. Our results confirm the efficacy of using the ω-condition number compared to the κ-condition number.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Jung, Woosuk L. | - |
University of Waterloo - Canadá
|
| 2 | Torregrosa-Belén, David | - |
Universidad de Chile - Chile
|
| 3 | Wolkowicz, Henry | - |
University of Waterloo - Canadá
|
| Fuente |
|---|
| Ministerio de Ciencia, Innovacion y Universidades |
| Agencia Estatal de Investigación |
| National Research Council Canada |
| ERDF/EU |
| European Social Fund Plus |
| Centro de Modelamiento Matemático, Facultad de Ciencias Físicas y Matemáticas |
| Agradecimiento |
|---|
| The author D. Torregrosa-Bel\u00E9n was partially supported by Centro de Modelamiento Matem\u00E1tico (CMM) BASAL fund FB210005 for center of excellence from ANID-Chile and by Grants PGC2018-097960-B-C22 and PID2022-136399NB-C21 funded by ERDF/EU and by MICIU/AEI/ 10.13039/501100011033. Also by Grant PRE2019-090751 funded by \u201CESF Investing in your future\u2019 and by MICIU/AEI/10.13039/501100011033. All the authors were partially supported by the National Research Council of Canada. |