Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Unveiling the role of local metabolic constraints on the structure and activity of spiking neural networks
Indexado
Scopus SCOPUS_ID:105007998307
DOI 10.1371/JOURNAL.PCBI.1013148
Año 2025
Tipo

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Understanding the intricate interplay between neural dynamics and metabolic constraints is crucial for unraveling the mysteries of the brain. Despite the significance of this relationship, specific details concerning the impact of metabolism on neuronal dynamics and neural network architecture remain elusive, creating a notable gap in the existing literature. This study employs an energy-dependent neuron and plasticity model to analyze the role of local metabolic constraints in shaping both the dynamics and structure of Spiking Neural Networks (SNN). Specifically, an energy-dependent version of the leaky integrate-and-fire model is utilized, along with a three-factor learning rule that incorporates postsynaptic available energy as the third factor. These models allow for fine-tuning sensitivity in the presence of energy imbalances. Analytical expressions predicting the network’s activity and structure are derived, and a fixed point analysis reveals the emergence of attractor states characterized by neuronal and synaptic sensitivity to energy imbalances. Analytical findings are validated through numerical simulations using an excitatory-inhibitory network. Furthermore, these simulations enable the study of SNN activity and structure under conditions simulating metabolic impairment. In conclusion, by employing energy-dependent models with adjustable sensitivity to energy imbalances, our study advances the understanding of how metabolic constraints shape SNN dynamics and structure. Moreover, in light of compelling evidence linking neuronal metabolic impairment to neurodegenerative diseases, the incorporation of local metabolic constraints into the investigation of neuronal network structure and activity opens an intriguing avenue for inspiring the development of therapeutic interventions.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Mathematical & Computational Biology
Biochemical Research Methods
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Jaras, Ismael - Universidad de Chile - Chile
2 Orchard, Marcos E. - Universidad de Chile - Chile
3 Maldonado, Pedro E. - Universidad de Chile - Chile
Centro Nacional de Inteligencia Artificial - Chile
4 Vergara, Rodrigo C. - Centro Nacional de Inteligencia Artificial - Chile
Universidad Metropolitana de Ciencias de la Educación - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Fondo Nacional de Desarrollo Científico y Tecnológico
National Center for Artificial Intelligence CENIA

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was partially supported by the National Center for Artificial Intelligence CENIA, FB210017, BASAL, ANID, awarded to P.E.M. and R.C.V., by FONDECYT Grant 1250036, and by the Advanced Center for Electrical and Electronic Engineering, BASAL Project AFB240002, awarded to M.E.O. The authors also acknowledge support from ANID-PFCHA/Doctorado Nacional/2019-21190330 for funding Ismael Jaras\u2019s doctoral studies.

Muestra la fuente de financiamiento declarada en la publicación.