Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1016/J.COMPBIOMED.2025.110399 | ||
| Año | 2025 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Aims: The long-term effect of high altitude hypoxia (HAH) exposure is a relevant problem in cardiovascular biomechanics, that has not yet been fully assessed. Regarding this, the study examined the passive viscoelastic response of the descending thoracic aorta of individuals exposed to HAH. Main methods: Through a guinea-pig animal model, subjected to either normoxic-normobaric or HAH conditions (groups N and H, respectively), biaxial tensile and uniaxial stress relaxation tests were performed on artery samples. The experimental data obtained from these biomechanical tests allowed us to characterize an anisotropic quasi-linear viscoelastic model based on the Gasser-Holzapfel-Ogden (GHO) hyperelastic material. Key findings: Among the main results, biaxial tensile tests exhibited a trend towards a higher stiffness (at high stretch levels) in the hypoxic group. Results of stress relaxation tests revealed a similar behavior between groups, at both the initial, more pronounced stress-relaxation stage, attributed to the effect of elastin fibers, and at the second stage, with a less pronounced decrease in stress due to the role of collagen fibers. Significance: Our study suggests that although HAH does not alter significantly the passive elastic and viscous properties of aortic tissue under ex-vivo conditions, there is a tendency to material stiffening to supra-physiological levels. Assessment of the biomechanical response is crucial to determine the pathophysiological effects in the cardiovascular system derived from exposure to HAH.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Navarrete, Alvaro | Hombre |
Universidad de Santiago de Chile - Chile
|
| 2 | Bezmalinovic, Alejandro | - |
Universidad de Santiago de Chile - Chile
|
| 3 | Utrera, Andres | Hombre |
Universidad de Santiago de Chile - Chile
|
| 4 | Álvarez-Carrasco, Fabián | - |
Universidad de Santiago de Chile - Chile
|
| 5 | HERRERA-VIDELA, EMILIO AUGUSTO | Hombre |
Universidad de Chile - Chile
|
| 6 | GARCIA-HERRERA, CLAUDIO MOISES | Hombre |
Universidad de Santiago de Chile - Chile
|
| 7 | Celentano, Diego J. | - |
Pontificia Universidad Católica de Chile - Chile
|
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Universidad de Santiago de Chile |
| Faculty of Engineering |
| Agencia Nacional de Investigación y Desarrollo |
| APC |
| Agradecimiento |
|---|
| The authors are grateful for the support of the Chilean National Agency of Research and Development (ANID) and the Faculty of Engineering (FING) USACH . This manuscript was funded by FONDECYT Regular grants N\u00B0 1201283 , 1220956 & 1241502 . A.N. thanks \u201C Ayudante_DICYT \u201D project, code \u201C 022416GH_AYUDANTE \u201D, provided by \u201CVicerrector\u00EDa de Investigaci\u00F3n, Desarrollo e Innovaci\u00F3n\u201D from Universidad de Santiago de Chile (Research Assistant Salary and APC). A.U. and F.A-C. thank ANID PFCHA/DOCTORADO NACIONAL BECAS CHILE ( 2023\u201321231932 and 2023\u201321231931 ). |