Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.3934/DCDS.2022185 | ||
| Año | 2023 | ||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We study square-tiled tori, that is, tori obtained from a finite collection of unit squares by parallel side identifications. Square-tiled tori can be parametrized in a natural way that allows to count the number of square-tiled tori tiled by a given number of square tiles. There is a natural SL(2,Z)-action on square-tiled tori and we classify SL(2,Z)-orbits using two numerical invariants that can be easily computed. We deduce the exact size of every SL(2,Z)-orbit. In particular, this answers a question by M. Bolognesi on the number of cyclic covers of the torus, which corresponds to particular SL(2,Z)-orbits of square-tiled tori. We also give the asymptotic behavior of the number of cyclic square-tiled tori.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Pardo, Angel | - |
Universidad de Santiago de Chile - Chile
|
| Fuente |
|---|
| Centro de Modelamiento Matematico (CMM) |
| FONDECYT Regular grants |
| BASAL funds for centers of excellence from ANID-Chile |
| ANID-Chile through the FONDECYT Postdoctorado |