Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/978-981-97-7498-2_11 | ||||
| Año | 2025 | ||||
| Tipo | proceedings paper |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
This paper proposes Artificial Intelligence as a transformative tool for the predictive analysis of hearing loss within intelligent medicine. We aim to refine the predictive accuracy for sensorineural hearing loss outcomes by harnessing Artificial Intelligence capabilities. The research encapsulates the systematic organization of qualitative features within a meticulously curated database crafted with the guidance of audiology experts. This database is then employed to train AI-based models, thereby enabling the nuanced interpretation of complex patterns and relationships inherent in the data. The goal is to advance the predictive methodologies that can inform and enhance hearing loss diagnosis and treatment strategies. The code and database generated for this work have been released as a contribution.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Barahona, Rene | - |
Universidad de Chile - Chile
|
| 2 | Retamal, Bruno | - |
Universidad de Chile - Chile
|
| 3 | Leon, Javiera | - |
Universidad de Chile - Chile
|
| 4 | Montenegro, Diego | - |
Universidad de Chile - Chile
|
| 5 | Bugueno-Cordova, Ignacio | - |
Universidad de Chile - Chile
|
| 6 | Ehijo, Alfonso | - |
Universidad de Chile - Chile
|
| 7 | Chen, YW | - | |
| 8 | Tanaka, S | - | |
| 9 | Howlett, RJ | - | |
| 10 | Jain, LC | - |