Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/S10114-025-3385-1 | ||||
| Año | 2025 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We study the equation -Delta u = |x|(alpha)u(p alpha & lowast;+epsilon)+lambda(epsilon)|x|(beta)u in Omega, under the condition u = 0 on partial derivative Omega, where Omega is a smooth bounded domain in R-N, N >= 5, which is symmetric respect to x(1), x(2), 2026;, x(N) and contains the origin, alpha > -2, -2 < beta < N - 4, p(alpha)(& lowast; )= N+2 alpha+2/N-2, epsilon > 0 is a small parameter and lambda(epsilon) > 0 depends on epsilon, with lambda(epsilon) -> 0 as epsilon -> 0. Our main focus lies in finding positive solutions that take the form of a tower of bubbles of order alpha, exhibiting concentration at the origin as epsilon tends to zero. Furthermore, we extend our study to the equation -Delta u = |x|(alpha)up(alpha & lowast;-epsilon)-lambda(epsilon)|x|beta u in R-N\B-1, where B-1 is the unit ball centered at the origin, under Dirichlet zero boundary condition and an additional vanishing condition at infinity. In this context, we discover positive solutions that take the form of a tower of bubbles of order alpha, progressively flattening as epsilon tends to zero.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Alarcon, Salomon | - |
Universidad Técnica Federico Santa María - Chile
|
| 2 | Quijada, Pablo | - |
Universidad Técnica Federico Santa María - Chile
|
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| FONDECYT (Chile) |
| ANID-Subdirección de Capital Humano/Doctorado Nacional/2020 |
| Doctoral scholarship program ANID-Subdireccion de Capital Humano/Doctorado Nacional/2020 |
| Agradecimiento |
|---|
| Supported by the doctoral scholarship program ANID-Subdireccion de Capital Humano/Doctorado Nacional/2020-21221826. Moreover, both authors were partially supported by FONDECYT (Grant Nos. #1211766 and #1221365 (Chile)) |
| Supported by the doctoral scholarship program ANID-Subdirecci\u00F3n de Capital Humano/Doctorado Nacional/2020-21221826. Moreover, both authors were partially supported by FONDECYT (Grant Nos. #1211766 and #1221365 (Chile)) Acknowledgements |