Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Deep Learning for Time-Series Forecasting With Exogenous Variables in Energy Consumption: A Performance and Interpretability Analysis
Indexado
WoS WOS:001494152200048
Scopus SCOPUS_ID:105005284075
DOI 10.1109/ACCESS.2025.3570618
Año 2025
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



The rise of decentralized energy sources and renewables demands advanced grid planning, with short-term load forecasting (STLF) playing a crucial role. Energy demand in smart grids is highly variable and influenced by external factors, making accurate forecasting challenging. While deep learning models excel in time-series forecasting, their ability to integrate exogenous variables remains uncertain. This study evaluates different deep learning architectures for STLF, including recurrent (Long Short-Term Memory, LSTM), probabilistic (Deep Autoregressive, DeepAR), attention-based (Temporal Fusion Transformer, TFT), and foundation models (TimeLLM), each designed to capture temporal dependencies differently. The "Smart Meters in London" dataset, comprising 1.6 million energy consumption records enriched with weather and socio-demographic data, was used for evaluation. Results show that incorporating exogenous variables reduces forecasting error, with TFT achieving a test MAE of 1.643, RMSE of 2.903, and sMAPE of 18.8% on a lower-variability subset, leveraging long-range dependencies for enhanced predictions. DeepAR outperformed other models on the larger, noisier dataset, achieving a test MAE of 1.699, RMSE of 3.310, and sMAPE of 18.8%, demonstrating strong generalization. LSTM performed reasonably well but struggled to utilize exogenous information, leading to higher forecasting errors. TimeLLM, despite tailored prompting for time-series forecasting, failed to outperform task-specific models, with a test MAE of 2.193, RMSE of 3.473, and sMAPE of 22.89%, highlighting the challenges of adapting foundation models trained on different modalities to structured time-series forecasting. Beyond predictive accuracy, interpretability analysis challenges the assumption that attention mechanisms reliably capture feature importance. Performance degradation analysis revealed that perturbing features ranked highly by SHAP values and permutation feature importance led to sharper error increases than attention-based rankings, with permutation demonstrating the strongest correlation with prediction errors. These findings underscore the role of Explainable AI (XAI) in time-series forecasting, emphasizing the need for robust interpretability frameworks to ensure transparency in deep learning-based predictions.

Revista



Revista ISSN
Ieee Access 2169-3536

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Information Systems
Telecommunications
Engineering, Electrical & Electronic
Scopus
Materials Science (All)
Computer Science (All)
Engineering (All)
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Mohammadi, Ava - Tilburg Univ - Países Bajos
Tilburg University - Países Bajos
2 Napoles, Gonzalo Hombre Tilburg Univ - Países Bajos
Tilburg University - Países Bajos
3 Salgueiro, Yamisleydi - Universidad de Talca - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Fondo Nacional de Desarrollo Científico y Tecnológico
Agencia Nacional de Investigación y Desarrollo
CENIA
ANID through FONDECYT Regular
Basal National Center for Artificial Intelligence through CENIA
Basal National Center for Artificial Intelligence

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The work of Yamisleydi Salgueiro was supported in part by ANID through FONDECYT Regular under Grant 1240293, and in part by the Basal National Center for Artificial Intelligence through CENIA under Grant FB210017
The work of Yamisleydi Salgueiro was supported in part by ANID through FONDECYT Regular under Grant 1240293, and in part by the Basal National Center for Artificial Intelligence through CENIA under Grant FB210017.

Muestra la fuente de financiamiento declarada en la publicación.